login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers m such that m is greater than the sum of the k-th powers of its digits, where k is the number of digits of m.
1

%I #44 Sep 08 2022 08:46:21

%S 10,11,12,13,20,21,22,23,24,30,31,32,33,34,35,40,41,42,43,44,45,50,51,

%T 52,53,54,55,60,61,62,63,64,65,70,71,72,73,74,75,80,81,82,83,84,90,91,

%U 92,93,100,101,102,103,104,110,111,112,113,114,120,121,122,123,124,130,131,132,133,134

%N Numbers m such that m is greater than the sum of the k-th powers of its digits, where k is the number of digits of m.

%C These integers are called "nombres résistants" on the French site Diophante.

%C There exists a smallest number M_0 such that every number >= M_0 is a term of this sequence. This integer has 60 digits: M_0 = 102 * 10^57. So 102 * 10^57 - 1 is not "résistant" (proof in the link).

%H Robert Israel, <a href="/A308105/b308105.txt">Table of n, a(n) for n = 1..10000</a>

%H Diophante, <a href="http://www.diophante.fr/problemes-par-themes/arithmetique-et-algebre/a3-nombres-remarquables/3969-a367-les-entiers-font-de-la-resistance">A367. Les entiers font de la résistance</a>, Oct. 2017 (in French).

%F Numbers m such that m - A101337(m) > 0.

%e 34 - (3^2 + 4^2) = 9 so 34 is a term.

%e 126 - (1^3 + 2^3 + 6^3) = -99 and 126 is not a term.

%p filter:= proc(n) local L,m,t;

%p L:= convert(n,base,10);

%p m:= nops(L);

%p n > add(t^m,t=L)

%p end proc:

%p select(filter, [$1..1000]); # _Robert Israel_, Jun 21 2019

%t Select[Range[140], # - Total[IntegerDigits[#]^IntegerLength[#]] > 0 &] (* _Michael De Vlieger_, Jun 09 2019 *)

%o (Magma) sol:=[];v:=[];digit:=[]; m:=1;

%o for u in [1..150] do

%o digit:=Intseq(u);

%o for i in [1..#digit] do v[i]:=digit[i]^#digit; end for;

%o if u-&+v gt 0 then sol[m]:=u; m:=m+1; end if;

%o end for;

%o sol; // _Marius A. Burtea_, May 13 2019

%o (PARI) isok(n) = { my(d=digits(n), nb=#d); n > sum(k=1, #d, d[k]^nb);} \\ _Michel Marcus_, May 19 2019

%Y Cf. A000027, A101337, A005188.

%K nonn,base

%O 1,1

%A _Bernard Schott_, May 13 2019