login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

An eventually quasi-quadratic solution to Hofstadter's Q recurrence.
8

%I #16 Nov 14 2016 09:04:17

%S 4,0,5,6,2,6,6,3,11,6,2,12,6,3,23,6,2,18,6,3,41,6,2,24,6,3,65,6,2,30,

%T 6,3,95,6,2,36,6,3,131,6,2,42,6,3,173,6,2,48,6,3,221,6,2,54,6,3,275,6,

%U 2,60,6,3,335,6,2,66,6,3,401,6,2,72,6,3,473,6

%N An eventually quasi-quadratic solution to Hofstadter's Q recurrence.

%C a(n) is the solution to the recurrence relation a(n) = a(n-a(n-1)) + a(n-a(n-2)) [Hofstadter's Q recurrence], with the initial conditions: a(n) = 0 if n <= 0; a(1) = 4, a(2) = 0, a(3) = 5, a(4) = 6, a(5) = 2, a(6) = 6, a(7) = 6, a(8) = 3.

%H Colin Barker, <a href="/A264757/b264757.txt">Table of n, a(n) for n = 1..1000</a>

%H Nathan Fox, <a href="http://arxiv.org/abs/1511.06484">Quasipolynomial Solutions to the Hofstadter Q-Recurrence</a>, arXiv preprint arXiv:1511.06484 [math.NT], 2015.

%H <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,3,0,0,0,0,0,-3,0,0,0,0,0,1).

%F a(1) = 4, a(2) = 0; thereafter a(6*n) = 6*n, a(6*n+1) = 6, a(6*n+2) = 3, a(6*n+3) = 3*n^2+3*n+5, a(6*n+4) = 6, a(6*n+5) = 2.

%F From _Colin Barker_, Nov 14 2016: (Start)

%F G.f.: x*(4 + 5*x^2 + 6*x^3 + 2*x^4 + 6*x^5 - 6*x^6 + 3*x^7 - 4*x^8 - 12*x^9 - 4*x^10 - 6*x^11 - 6*x^13 + 5*x^14 + 6*x^15 + 2*x^16 + 2*x^18 + 3*x^19) / ((1 - x)^3 * (1 + x)^3 * (1 - x + x^2)^3 * (1 + x + x^2)^3).

%F a(n) = 3*a(n-6) - 3*a(n-12) + a(n-18) for n>20.

%F (End)

%t Table[If[n < 3, # - n - 1, #] &@ Switch[Mod[n, 6], 0, n, 1, 6, 2, 3, 3, 3 #^2 + 3 # + 5 &[(n - 3)/6], 4, 6, 5, 2], {n, 75}] (* or *)

%t Rest@ CoefficientList[Series[x (4 + 5 x^2 + 6 x^3 + 2 x^4 + 6 x^5 - 6 x^6 + 3 x^7 - 4 x^8 - 12 x^9 - 4 x^10 - 6 x^11 - 6 x^13 + 5 x^14 + 6 x^15 + 2 x^16 + 2 x^18 + 3 x^19)/((1 - x)^3*(1 + x)^3*(1 - x + x^2)^3*(1 + x + x^2)^3), {x, 0, 76}], x] (* _Michael De Vlieger_, Nov 14 2016 *)

%o (PARI) Vec(x*(4+5*x^2+6*x^3+2*x^4+6*x^5-6*x^6+3*x^7-4*x^8-12*x^9-4*x^10-6*x^11-6*x^13+5*x^14+6*x^15+2*x^16+2*x^18+3*x^19)/((1-x)^3*(1+x)^3*(1-x+x^2)^3*(1+x+x^2)^3) + O(x^100)) \\ _Colin Barker_, Nov 14 2016

%Y Cf. A005185, A188670, A244477, A264756, A264758.

%K nonn,easy

%O 1,1

%A _Nathan Fox_, Nov 23 2015