login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198109 Decimal expansion of greatest x having x^2+3x=4*cos(x). 3
7, 6, 5, 7, 2, 6, 4, 4, 2, 9, 2, 0, 5, 4, 0, 7, 1, 7, 4, 8, 3, 1, 0, 1, 0, 4, 9, 2, 3, 9, 4, 4, 9, 9, 3, 8, 2, 5, 9, 3, 8, 8, 0, 0, 4, 2, 0, 4, 9, 6, 3, 7, 0, 7, 0, 8, 5, 2, 1, 5, 1, 7, 2, 8, 8, 4, 5, 8, 6, 9, 4, 9, 7, 5, 8, 1, 7, 4, 9, 7, 9, 4, 2, 2, 8, 3, 9, 2, 5, 1, 1, 7, 8, 8, 9, 2, 8, 8, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A197737 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

least x: -2.072191302711809327379682290027003...

greatest x: 0.7657264429205407174831010492394...

MATHEMATICA

a = 1; b = 3; c = 4;

f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]

Plot[{f[x], g[x]}, {x, -3, 1}]

r1 = x /. FindRoot[f[x] == g[x], {x, -2.1, -2.9}, WorkingPrecision -> 110]

RealDigits[r1] (* A198108 *)

r2 = x /. FindRoot[f[x] == g[x], {x, .76, .77}, WorkingPrecision -> 110]

RealDigits[r2] (* A198109 *)

CROSSREFS

Cf. A197737.

Sequence in context: A178753 A104178 A092874 * A059751 A019859 A188736

Adjacent sequences:  A198106 A198107 A198108 * A198110 A198111 A198112

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 21 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 5 00:01 EDT 2020. Contains 335457 sequences. (Running on oeis4.)