login
A198107
Decimal expansion of greatest x having x^2+3x=3*cos(x).
3
6, 5, 2, 5, 7, 3, 2, 5, 1, 5, 3, 3, 3, 9, 7, 4, 2, 4, 4, 4, 1, 2, 6, 2, 3, 4, 5, 3, 4, 6, 4, 8, 8, 2, 4, 9, 7, 6, 4, 9, 9, 2, 8, 7, 6, 1, 0, 9, 1, 8, 7, 1, 1, 5, 3, 0, 9, 2, 9, 0, 6, 7, 8, 2, 2, 7, 6, 5, 4, 4, 2, 1, 9, 9, 0, 9, 5, 6, 9, 3, 7, 0, 1, 4, 2, 1, 0, 8, 9, 9, 5, 5, 1, 8, 7, 3, 1, 8, 6, 9, 8, 7
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -2.19856133546816188233076436710906...
greatest x: 0.6525732515333974244412623453464...
MATHEMATICA
a = 1; b = 3; c = 3;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -3, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -2.2, -2.1}, WorkingPrecision -> 110]
RealDigits[r1] (* A198106 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .64, .65}, WorkingPrecision -> 110]
RealDigits[r2] (* A198107 *)
CROSSREFS
Cf. A197737.
Sequence in context: A221215 A199180 A197265 * A004554 A178959 A370113
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 21 2011
STATUS
approved