login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198107 Decimal expansion of greatest x having x^2+3x=3*cos(x). 3
6, 5, 2, 5, 7, 3, 2, 5, 1, 5, 3, 3, 3, 9, 7, 4, 2, 4, 4, 4, 1, 2, 6, 2, 3, 4, 5, 3, 4, 6, 4, 8, 8, 2, 4, 9, 7, 6, 4, 9, 9, 2, 8, 7, 6, 1, 0, 9, 1, 8, 7, 1, 1, 5, 3, 0, 9, 2, 9, 0, 6, 7, 8, 2, 2, 7, 6, 5, 4, 4, 2, 1, 9, 9, 0, 9, 5, 6, 9, 3, 7, 0, 1, 4, 2, 1, 0, 8, 9, 9, 5, 5, 2, 0, 4, 1, 9, 9, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A197737 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

least x: -2.19856133546816188233076436710906...

greatest x: 0.6525732515333974244412623453464...

MATHEMATICA

a = 1; b = 3; c = 3;

f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]

Plot[{f[x], g[x]}, {x, -3, 1}]

r1 = x /. FindRoot[f[x] == g[x], {x, -2.2, -2.1}, WorkingPrecision -> 110]

RealDigits[r1]  (* A198106 *)

r2 = x /. FindRoot[f[x] == g[x], {x, .64, .65}, WorkingPrecision -> 110]

RealDigits[r2]  (* A198107 *)

CROSSREFS

Cf. A197737.

Sequence in context: A221215 A199180 A197265 * A004554 A178959 A266998

Adjacent sequences:  A198104 A198105 A198106 * A198108 A198109 A198110

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 21 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 9 18:32 EDT 2020. Contains 336326 sequences. (Running on oeis4.)