The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A178959 Decimal expansion of the site percolation threshold for the (3,6,3,6) Kagome Archimedean lattice. 0
 6, 5, 2, 7, 0, 3, 6, 4, 4, 6, 6, 6, 1, 3, 9, 3, 0, 2, 2, 9, 6, 5, 6, 6, 7, 4, 6, 4, 6, 1, 3, 7, 0, 4, 0, 7, 9, 9, 9, 2, 4, 8, 6, 4, 5, 6, 3, 1, 8, 6, 1, 2, 2, 5, 5, 2, 7, 5, 1, 7, 2, 4, 3, 7, 3, 5, 8, 6, 8, 3, 5, 5, 7, 2, 1, 9, 7, 0, 5, 2, 9, 1, 5, 6, 9, 6, 6, 7, 7, 3, 6, 8, 5, 2, 0, 0, 8, 5, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Consider an infinite graph where vertices are selected with probability p. The site percolation threshold is a unique value p_c such that if p > p_c an infinite connected component of selected vertices will almost surely exist, and if p < p_c an infinite connected component will almost surely not exist. This sequence gives p_c for the (3,6,3,6) Kagome Archimedean lattice. REFERENCES Sykes, M. F.; J. W. Essam (1964). "Exact critical percolation probabilities for site and bond problems in two dimensions". Journal of Mathematical Physics (N.Y.) 5 (8): 1117-1127. Bibcode 1964JMP.....5.1117S. doi:10.1063/1.1704215. LINKS Wikipedia, Percolation threshold FORMULA 1 - 2*sin(Pi/18). EXAMPLE 0.6527036446661393... MATHEMATICA RealDigits[1 - 2 Sin[Pi/18], 10, 105][[1]] (* Alonso del Arte, Dec 22 2012 *) PROG (PARI) 1-2*sin(Pi/18) \\ Charles R Greathouse IV, Jan 03 2013 CROSSREFS Cf. A174849. Sequence in context: A197265 A198107 A004554 * A266998 A021609 A140684 Adjacent sequences:  A178956 A178957 A178958 * A178960 A178961 A178962 KEYWORD nonn,cons,easy AUTHOR Jonathan Vos Post, Dec 22 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 25 03:36 EDT 2021. Contains 346282 sequences. (Running on oeis4.)