login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198108 Decimal expansion of least x having x^2+3x=4*cos(x). 3
2, 0, 7, 2, 1, 9, 1, 3, 0, 2, 7, 1, 1, 8, 0, 9, 3, 2, 7, 3, 7, 9, 6, 8, 2, 2, 9, 0, 0, 2, 7, 0, 0, 3, 7, 2, 6, 5, 6, 8, 7, 2, 0, 3, 7, 5, 9, 3, 5, 8, 9, 1, 6, 2, 5, 2, 8, 7, 0, 1, 4, 3, 3, 8, 1, 2, 1, 1, 8, 3, 7, 7, 0, 3, 9, 0, 6, 6, 3, 2, 8, 1, 3, 6, 2, 5, 0, 3, 7, 1, 3, 5, 7, 3, 6, 6, 3, 2, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A197737 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

least x: -2.072191302711809327379682290027003...

greatest x: 0.7657264429205407174831010492394...

MATHEMATICA

a = 1; b = 3; c = 4;

f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]

Plot[{f[x], g[x]}, {x, -3, 1}]

r1 = x /. FindRoot[f[x] == g[x], {x, -2.1, -2.9}, WorkingPrecision -> 110]

RealDigits[r1] (* A198108 *)

r2 = x /. FindRoot[f[x] == g[x], {x, .76, .77}, WorkingPrecision -> 110]

RealDigits[r2] (* A198109 *)

CROSSREFS

Cf. A197737.

Sequence in context: A174968 A254445 A140663 * A300704 A300702 A105394

Adjacent sequences:  A198105 A198106 A198107 * A198109 A198110 A198111

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 21 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 9 18:32 EDT 2020. Contains 336326 sequences. (Running on oeis4.)