login
A198105
Decimal expansion of greatest x having x^2+3x=2*cos(x).
3
5, 0, 1, 0, 4, 1, 1, 8, 6, 4, 4, 6, 4, 9, 0, 3, 8, 3, 3, 1, 5, 1, 4, 1, 7, 7, 9, 0, 6, 6, 3, 4, 6, 4, 9, 7, 8, 6, 0, 8, 4, 9, 9, 1, 4, 5, 4, 4, 5, 0, 9, 0, 6, 7, 8, 0, 4, 3, 2, 0, 5, 8, 4, 4, 4, 6, 2, 6, 3, 3, 0, 2, 7, 0, 5, 5, 2, 4, 7, 0, 5, 3, 4, 5, 8, 4, 0, 1, 6, 9, 4, 5, 2, 2, 4, 9, 1, 2, 8
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -2.38894934360890459687043267819730...
greatest x: 0.5010411864464903833151417790663...
MATHEMATICA
a = 1; b = 3; c = 2;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -3, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -2.4, -2.3}, WorkingPrecision -> 110]
RealDigits[r1] (* A198104 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .5, .51}, WorkingPrecision -> 110]
RealDigits[r2] (* A198105 *)
CROSSREFS
Cf. A197737.
Sequence in context: A227985 A071086 A339208 * A347683 A339209 A277529
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 21 2011
STATUS
approved