login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227985
Numerators of the fractional triangle T(n,k) = binomial(n-1,k)*B_k for 0 <= k < n.
0
1, 0, -1, 0, -1, 1, 0, -1, 1, -1, 0, -1, 1, -1, 0, 0, -1, 1, -5, 0, 1, 0, -1, 1, -1, 0, 1, 0, 0, -1, 1, -7, 0, 7, 0, -1, 0, -1, 1, -2, 0, 7, 0, -2, 0, 0, -1, 1, -3, 0, 7, 0, -1, 0, 3, 0, -1, 1, -5, 0, 1, 0, -1, 0, 1, 0, 0, -1, 1, -11, 0, 11, 0, -11, 0, 11, 0, -5, 0, -1, 1, -1, 0, 11, 0, -22, 0, 33, 0, -5, 0
OFFSET
0,19
COMMENTS
The n-th row's sum equals the n-th Bernoulli number (with B_1 = -1/2).
Starting from B_0 = 1, the successive B n comes from the equations written with the triangle A074909
1*B_0 +2*B_1 = 0 --> B_1 = 0 -1/2
1*B_0 +3*B_1 +3*B_2 = 0 --> B_2 = 0 -1/3 +1/2
1*B_0 +4*B_1 +6*B_2 +4*B_3 = 0 --> B_3 = 0 -1/4 +1/2 -1/4,
from the terms at the left-hand side. See A159688.
Main diagonal: 1, -1/2, 1/2, -1/4, 0, 1/12, 0, -1/12, 0, 3/20, 0, -5/12, 0, 691/420,... . After the initial 1, the numerators are given by -A050925.
EXAMPLE
Triangle begins:
1,
0, -1,
0, -1, 1,
0, -1, 1, -1,
0, -1, 1, -1, 0,
0, -1, 1, -5, 0, 1,
0 -1, 1, -1, 0, 1, 0,
0, -1, 1, -7, 0, 7, 0, -1,
0, -1, 1, -2, 0, 7, 0, -2, 0, etc.
MATHEMATICA
b[0] = 1; b[1] = -1/2; row[0] = {1}; row[1] = {0, -1/2}; row[n_] := Join[{0}, List @@ (-Sum[Binomial[n+1, k]*B[k], {k, 0, n-1}]/(n+1) // Expand) /. B -> b]; b[n_] := Total[row[n]]; Table[row[n] // Numerator, {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 12 2013 *)
PROG
(PARI) t(n, k) = if (n==1, 1, if (k== -1, 0, -bernfrac(k)*binomial(n, k)/n));
tabl(nn) = {for (n = 1, nn, for (k = -1, n-2, print1(t(n, k), ", "); ); print(); ); } \\ Michel Marcus, Sep 07 2013
(Magma) [1] cat [Numerator(-Binomial(n, k)*Bernoulli(k)/n): k in [-1..n-2], n in [2..15]]; // Bruno Berselli, Sep 09 2013
CROSSREFS
KEYWORD
sign,frac,tabl
AUTHOR
Paul Curtz, Aug 02 2013
EXTENSIONS
More terms from Jean-François Alcover, Aug 12 2013
STATUS
approved