login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318657
Numerators of the sequence whose Dirichlet convolution with itself yields A087003, a(2n) = 0 and a(2n+1) = moebius(2n+1).
4
1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -5, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, 0, -1
OFFSET
1,81
COMMENTS
Because the corresponding denominator sequence A318658 is equal to A046644 on all odd n, and this sequence as well as A087003 is zero on all even n, it means that also the Dirichlet convolution of a(n)/A046644(n) with itself will yield A087003. Because both A046644 and A087003 are multiplicative, this sequence is also. - Antti Karttunen, Sep 01 2018
LINKS
FORMULA
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A087003(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
a(2n) = 0, a(2n-1) = A257098(2n-1), thus multiplicative with a(2^e) = 0, a(p^e) = A257098(p^e) for odd primes p. - Antti Karttunen, Sep 01 2018
PROG
(PARI)
up_to = 65537;
A087003(n) = ((n%2)*moebius(n)); \\ I.e. a(n) = A000035(n)*A008683(n).
DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u};
v318657_18 = DirSqrt(vector(up_to, n, A087003(n)));
A318657(n) = numerator(v318657_18[n]);
CROSSREFS
Cf. A046644 or A318658 (denominators).
Cf. also A087003, A257098, A318659.
Sequence in context: A113038 A082512 A068385 * A286277 A225749 A227985
KEYWORD
sign,frac,mult
AUTHOR
Antti Karttunen, Aug 31 2018
STATUS
approved