OFFSET
1,7
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..100
FORMULA
a(n) is half the coefficient of xy in product(x^(-2k)+x^k(y^k+y^(-k)), k=1..n) for n>1.
EXAMPLE
For n=7 we have splittings 36/27/145, 36/127/45, 136/27/45, 135/27/46, 126/45/37 so a(7) = 5.
MAPLE
A113038:=proc(n) local i, j, p, t; t:= 0; for j from 2 to n do p:=1; for i to j do p:=p*(x^(-2*i)+x^i*(y^i+y^(-i))); od; t:=t, coeff(coeff(p, x, 1), y, 1)/2; od; t; end;
# second Maple program:
b:= proc() option remember; local i, j, t; `if`(args[1]=0, `if`(nargs=2, 1, b(args[t] $t=2..nargs)), add(`if`(args[j] -args[nargs] <0, 0, b(sort([seq(args[i] -`if`(i=j, args[nargs], 0), i=1..nargs-1)])[], args[nargs]-1)), j=1..nargs-1)) end: a:= proc(n) local m; m:= n*(n+1)/2; `if`(m>3 and irem(m, 3)=1, b(((m-1)/3)$2, (m-1)/3+1, n)/2, 0) end: seq(a(n), n=1..50); # Alois P. Heinz, Sep 03 2009
MATHEMATICA
A113038[n_] := Module[{i, j, p, t}, t = {0}; For[j = 2, j <= n, j++, p = 1; For[i = 1, i <= j, i++, p = p*(x^(-2*i) + x^i*(y^i + y^(-i))) // Expand]; t = Append[t, Coefficient[Coefficient[p, x, 1], y, 1]/2]; Print[j, " ", t[[-1]]]]; t];
A113038[50] (* Jean-François Alcover, Jan 23 2024, after first Maple program *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Floor van Lamoen, Oct 12 2005
EXTENSIONS
Extended beyond a(25) by Alois P. Heinz, Sep 03 2009
STATUS
approved