login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113039
Number of ways the set {1,2,...,n} can be split into three subsets of which the three sums are consecutive.
1
0, 0, 1, 0, 3, 5, 0, 23, 52, 0, 254, 593, 0, 3611, 8859, 0, 55554, 142169, 0, 946871, 2466282, 0, 17095813, 45359632, 0, 323760077, 870624976, 0, 6367406592, 17307580710, 0, 129063054631, 353941332518, 0, 2682355470491, 7410591325928, 0, 56930627178287
OFFSET
1,5
COMMENTS
The empty subset is not allowed, otherwise we would get a(2)=1. - Alois P. Heinz, Sep 03 2009
LINKS
FORMULA
a(n) is the coefficient of x^3y in product(x^(-2k)+x^k(y^k+y^(-k)), k=1..n) for n>2.
EXAMPLE
For n=5 we have splittings 4/23/15, 4/5/123, 13/5/24, so a(5)=3.
MAPLE
A113039:=proc(n) local i, j, p, t; t:= 0, 0; for j from 3 to n do p:=1; for i to j do p:=p*(x^(-2*i)+x^(i)*(y^i+y^(-i))); od; t:=t, coeff(coeff(p, x, 3), y, 1); od; t; end;
# second Maple program:
b:= proc() option remember; local i, j, t; `if` (args[1]=0, `if` (nargs=2, 1, b(args[t] $t=2..nargs)), add (`if` (args[j] -args[nargs] <0, 0, b(sort ([seq (args[i] -`if` (i=j, args[nargs], 0), i=1..nargs-1)])[], args[nargs]-1)), j=1..nargs-1)) end: a:= proc(n) local m; m:= n*(n+1)/2; `if` (n>2 and irem (m, 3)=0, b(m/3-1, m/3, m/3+1, n), 0) end: seq (a(n), n=1..42); # Alois P. Heinz, Sep 03 2009
MATHEMATICA
a[n_] := If[n <= 2, 0, Product[x^(-2k)+x^k(y^k+y^(-k)), {k, 1, n}] // SeriesCoefficient[#, {x, 0, 3}, {y, 0, 1}]&];
Table[an = a[n]; Print[n, " ", an]; an, {n, 1, 26}] (* Jean-François Alcover, Nov 17 2022 *)
CROSSREFS
Cf. A112972.
Sequence in context: A318204 A306637 A111823 * A093016 A031018 A146525
KEYWORD
nonn
AUTHOR
Floor van Lamoen, Oct 12 2005
EXTENSIONS
Extended beyond a(25) by Alois P. Heinz, Sep 03 2009
STATUS
approved