The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A306637 a(n) = Fibonacci(n) * A128834(n). 0
 0, 1, 1, 0, -3, -5, 0, 13, 21, 0, -55, -89, 0, 233, 377, 0, -987, -1597, 0, 4181, 6765, 0, -17711, -28657, 0, 75025, 121393, 0, -317811, -514229, 0, 1346269, 2178309, 0, -5702887, -9227465, 0, 24157817, 39088169, 0, -102334155, -165580141, 0, 433494437 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS 0 = a(n)*(+a(n) +2*a(n+1) +2*a(n+2)) -a(n+3)*(2*a(n+1) -2*a(n+2) +a(n+3)) for all n in Z. LINKS Table of n, a(n) for n=0..43. Index entries for linear recurrences with constant coefficients, signature (1,-2,-1,-1). FORMULA G.f.: (x + x^3) / (1 - x + 2*x^2 + x^3 + x^4). a(3*n) = 0. G.f.: 1 / (1-x / (1+x / (1-3*x / (1+4*x / (3+1*x / (2-3*x / (1+2*x))))))). a(n) = (-1)^n * a(-n) = a(n-1) - 2*a(n-2) - a(n-3) - a(n-4) for all n in Z. a(n) = A275858(n-1)+A275858(n-3). - R. J. Mathar, Sep 24 2021 EXAMPLE G.f. = x + x^2 - 3*x^4 - 5*x^5 + 13*x^7 + 21*x^8 - 55*x^10 - 89*x^11 + ... MATHEMATICA a[ n_] := Fibonacci[n] (-1)^Quotient[n, 3] Min[Mod[n, 3], 1]; PROG (PARI) {a(n) = fibonacci(n) * (-1)^(n\3) * (n%3>0)}; CROSSREFS Cf. A000045, A128834. Sequence in context: A200615 A349605 A318204 * A111823 A113039 A093016 Adjacent sequences: A306634 A306635 A306636 * A306638 A306639 A306640 KEYWORD sign,easy AUTHOR Michael Somos, Mar 02 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 19:43 EDT 2024. Contains 373410 sequences. (Running on oeis4.)