OFFSET
0,4
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,-2,-1,-1).
FORMULA
a(n) = floor(r*a(n-1)) - floor(s*a(n-2)), where r = (1+sqrt(5))/2, s = r/(r-1).
G.f.: 1/(1 - x + 2*x^2 + x^3 + x^4).
MATHEMATICA
c = 1; d = 1; z = 40;
r = (c + Sqrt[c^2 + 4 d])/2; s = r/(r - 1); a[0] = 1; a[1] = 1;
a[n_] := a[n] = Floor[c*s*a[n - 1]] + Floor[d*r*a[n - 2]];
t = Table[a[n], {n, 0, z}] (* A275856 *)
CoefficientList[Series[1/(1-x+2*x^2+x^3+x^4), {x, 0, 50}], x] (* G. C. Greubel, Feb 08 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(1/(1-x+2*x^2+x^3+x^4)) \\ G. C. Greubel, Feb 08 2018
(Magma) Q:=Rationals(); R<x>:=PowerSeriesRing(Q, 40); Coefficients(R!(1/(1-x+2*x^2+x^3+x^4))) // G. C. Greubel, Feb 08 2018
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Clark Kimberling, Aug 12 2016
STATUS
approved