login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways the set {1,2,...,n} can be split into three subsets of which the three sums are consecutive.
1

%I #17 Nov 17 2022 16:59:58

%S 0,0,1,0,3,5,0,23,52,0,254,593,0,3611,8859,0,55554,142169,0,946871,

%T 2466282,0,17095813,45359632,0,323760077,870624976,0,6367406592,

%U 17307580710,0,129063054631,353941332518,0,2682355470491,7410591325928,0,56930627178287

%N Number of ways the set {1,2,...,n} can be split into three subsets of which the three sums are consecutive.

%C The empty subset is not allowed, otherwise we would get a(2)=1. - _Alois P. Heinz_, Sep 03 2009

%H Alois P. Heinz, <a href="/A113039/b113039.txt">Table of n, a(n) for n = 1..100</a>

%F a(n) is the coefficient of x^3y in product(x^(-2k)+x^k(y^k+y^(-k)), k=1..n) for n>2.

%e For n=5 we have splittings 4/23/15, 4/5/123, 13/5/24, so a(5)=3.

%p A113039:=proc(n) local i,j,p,t; t:= 0,0; for j from 3 to n do p:=1; for i to j do p:=p*(x^(-2*i)+x^(i)*(y^i+y^(-i))); od; t:=t,coeff(coeff(p,x,3),y,1); od; t; end;

%p # second Maple program:

%p b:= proc() option remember; local i, j, t; `if` (args[1]=0, `if` (nargs=2, 1, b(args[t] $t=2..nargs)), add (`if` (args[j] -args[nargs] <0, 0, b(sort ([seq (args[i] -`if` (i=j, args[nargs], 0), i=1..nargs-1)])[], args[nargs]-1)), j=1..nargs-1)) end: a:= proc(n) local m; m:= n*(n+1)/2; `if` (n>2 and irem (m,3)=0, b(m/3-1, m/3, m/3+1, n), 0) end: seq (a(n), n=1..42); # _Alois P. Heinz_, Sep 03 2009

%t a[n_] := If[n <= 2, 0, Product[x^(-2k)+x^k(y^k+y^(-k)), {k, 1, n}] // SeriesCoefficient[#, {x, 0, 3}, {y, 0, 1}]&];

%t Table[an = a[n]; Print[n, " ", an]; an, {n, 1, 26}] (* _Jean-François Alcover_, Nov 17 2022 *)

%Y Cf. A112972.

%K nonn

%O 1,5

%A _Floor van Lamoen_, Oct 12 2005

%E Extended beyond a(25) by _Alois P. Heinz_, Sep 03 2009