login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113035
Number of ways the set {1,2,...,n} can be split into two subsets of which the sum of one is twice the sum of the other.
1
0, 1, 1, 0, 3, 4, 0, 10, 17, 0, 46, 78, 0, 231, 401, 0, 1233, 2177, 0, 6869, 12268, 0, 39502, 71172, 0, 232686, 422076, 0, 1396669, 2547246, 0, 8512170, 15593760, 0, 52534875, 96598865, 0, 327669853, 604405633, 0, 2062171364, 3814087419, 0, 13078921499
OFFSET
1,5
LINKS
FORMULA
a(n) is the coefficient of x^0 in Product_{k=1..n} x^(-2k)+x^k.
EXAMPLE
For n=5 we have 5/1234, 14/532 and 23/541 so a(5)=3.
MAPLE
A113035:= proc(n) local i, j, p, t; t:= NULL; for j to n do p:=1; for i to j do p:=p*(x^(-2*i)+x^(i)); od; t:=t, coeff(p, x, 0); od; t; end;
# second Maple program:
b:= proc(n, i) option remember; local m; m:= i*(i+1)/2;
`if`(n>m, 0, `if`(n=m, 1, b(abs(n-i), i-1) +b(n+i, i-1)))
end:
a:= n-> `if`(irem(n, 3)=1, 0, b(n*(n+1)/6, n)):
seq(a(n), n=1..60); # Alois P. Heinz, Oct 31 2011
MATHEMATICA
b[n_, i_] := b[n, i] = Module[{m = i(i+1)/2}, If[n > m, 0, If[n == m, 1, b[Abs[n - i], i - 1] + b[n + i, i - 1]]]];
a[n_] := If[Mod[n, 3] == 1, 0, b[n(n+1)/6, n]];
Array[a, 60] (* Jean-François Alcover, Nov 18 2020, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A077628 A213280 A056862 * A374195 A099447 A078067
KEYWORD
nonn
AUTHOR
Floor van Lamoen, Oct 11 2005
STATUS
approved