login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213280
Triangle read by rows: T(n,k) (n>=1, 1 <= k <= n) = number of permutations of [1..n] in which none of the cycle lengths are divisible by k.
2
0, 0, 1, 0, 3, 4, 0, 9, 16, 18, 0, 45, 80, 90, 96, 0, 225, 400, 540, 576, 600, 0, 1575, 2800, 3780, 4032, 4200, 4320, 0, 11025, 22400, 26460, 32256, 33600, 34560, 35280, 0, 99225, 179200, 238140, 290304, 302400, 311040, 317520, 322560, 0, 893025, 1792000, 2381400, 2612736, 3024000, 3110400, 3175200, 3225600, 3265920
OFFSET
1,5
LINKS
E. D. Bolker and A. M. Gleason, Counting permutations, J. Combin. Thy., A 29 (1980), 236-242.
EXAMPLE
Triangle begins
[0],
[0, 1],
[0, 3, 4],
[0, 9, 16, 18],
[0, 45, 80, 90, 96],
[0, 225, 400, 540, 576, 600],
[0, 1575, 2800, 3780, 4032, 4200, 4320],
[0, 11025, 22400, 26460, 32256, 33600, 34560, 35280],
[0, 99225, 179200, 238140, 290304, 302400, 311040, 317520, 322560],
[0, 893025, 1792000, 2381400, 2612736, 3024000, 3110400, 3175200, 3225600, 3265920],
[0, 9823275, 19712000, 26195400, 28740096, 33264000, 34214400, 34927200, 35481600, 35925120, 36288000],
[0, 108056025, 216832000, 288149400, 344881152, 365904000, 410572800, 419126400, 425779200, 431101440, 435456000, 439084800],
...
MAPLE
read transforms;
f:=(n, d)->mul(j-did(j, d), j=1..n); # did(d, j) = 1 iff j divides d, otherwise 0
g:=n->[seq(f(n, d), d=1..n)];
[seq(g(n), n=1..14)];
# second Maple program:
T:= proc(n, k) option remember; `if`(n=0, 1, add(
`if`(irem(j, k)=0, 0, binomial(n-1, j-1)*(j-1)!*
T(n-j, k)), j=1..n))
end:
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, May 14 2016
MATHEMATICA
T[n_, k_] := T[n, k] = If[n == 0, 1, Sum[If[Mod[j, k] == 0, 0, Binomial[n - 1, j - 1]*(j - 1)!*T[n - j, k]], {j, 1, n}]];
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 26 2016, after Alois P. Heinz *)
CROSSREFS
Cf. A001563 (diagonal of triangle), A213279.
Sequence in context: A308642 A158674 A077628 * A056862 A113035 A374195
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jun 08 2012
STATUS
approved