login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099447 An Alexander sequence for the knot 6_3. 1
1, 3, 4, 0, -13, -30, -29, 24, 140, 243, 130, -429, -1348, -1752, 67, 5346, 11795, 10608, -11180, -56541, -93694, -42525, 182452, 535440, 660179, -106782, -2197373, -4613112, -3832996, 5081235, 22766722, 36008115 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The denominator is a parameterization of the Alexander polynomial for the knot 6_3. 1/(1-3*x+5*x^2-3*x^3+x^4) is the image of the g.f. of A057083 under the modified Chebyshev transform A(x)->(1/(1+x^2)^2)A(x/(1+x^2)).

LINKS

Table of n, a(n) for n=0..31.

Dror Bar-Natan, The Rolfsen Knot Table

Index entries for linear recurrences with constant coefficients, signature (3,-5,3,-1).

FORMULA

G.f.: (1-x)*(1+x)*(1+x^2)/(1-3x+5x^2-3x^3+x^4); - corrected Nov 24 2012

a(n)=A099446(n)-A099446(n-2).

MATHEMATICA

LinearRecurrence[{3, -5, 3, -1}, {1, 3, 4, 0, -13}, 40] (* Harvey P. Dale, Oct 07 2017 *)

CROSSREFS

Sequence in context: A213280 A056862 A113035 * A078067 A192442 A009126

Adjacent sequences:  A099444 A099445 A099446 * A099448 A099449 A099450

KEYWORD

easy,sign

AUTHOR

Paul Barry, Oct 16 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 20 22:28 EST 2020. Contains 332086 sequences. (Running on oeis4.)