login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339209
Triangle read by rows : inverse of triangle A339207.
3
1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 5, 0, 1, 0, -9, 0, 15, 0, 1, 0, 0, -63, 0, 35, 0, 1, 0, 1485, 0, -231, 0, 70, 0, 1, 0, 0, 18685, 0, -567, 0, 126, 0, 1, 0, -844757, 0, 125515, 0, -945, 0, 210, 0, 1, 0, 0, -14862727, 0, 600655, 0, -693, 0, 330, 0, 1
OFFSET
1,13
LINKS
René Gy, Bernoulli-Stirling Numbers, INTEGERS 20 (2020), #A67. See Table 5 p. 16.
FORMULA
From G. C. Greubel, Jul 21 2022: (Start)
T(n, k) = inverse( A339207(n, k) ).
T(n, n) = 1.
T(n, n-3) = A000332(n), for n > = 3. (End)
EXAMPLE
Triangle begins
1;
0, 1;
0, 0, 1;
0, 1, 0, 1;
0, 0, 5, 0, 1;
0, -9, 0, 15, 0, 1;
0, 0, -63, 0, 35, 0, 1;
0, 1485, 0, -231, 0, 70, 0, 1;
0, 0, 18685, 0, -567, 0, 126, 0, 1;
MATHEMATICA
M[n_, k_]:= M[n, k]= If[k==n, 1, Sum[Binomial[k+j-1, j]*n^j*BernoulliB[j]*(-1)^j*StirlingS1[n, k+j], {j, 0, n-k}]];
mat = Table[M[n, k], {n, 0, 25}, {k, 0, 25}];
T:= Inverse[mat];
Table[T[[n, k]], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 21 2022 *)
PROG
(PARI) TT(n, k) = sum(h=0, n-k, bernfrac(h)*binomial(k+h-1, h)*abs(stirling(n, h+k, 1))*n^h); \\ A339207
lista(nn) = {my(m = 1/matrix(nn, nn, n, k, n--; k--; TT(n, k))); for(n=1, nn, for (k=1, n, print1(m[n, k], ", "))); m; }
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Michel Marcus, Nov 27 2020
STATUS
approved