The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060338 Triangle T(n,k) of coefficients of Meixner polynomials of degree n, k=0..n. 7
 1, 1, 0, 1, 0, 1, 1, 0, 5, 0, 1, 0, 14, 0, 9, 1, 0, 30, 0, 89, 0, 1, 0, 55, 0, 439, 0, 225, 1, 0, 91, 0, 1519, 0, 3429, 0, 1, 0, 140, 0, 4214, 0, 24940, 0, 11025, 1, 0, 204, 0, 10038, 0, 122156, 0, 230481, 0, 1, 0, 285, 0, 21378, 0, 463490, 0, 2250621, 0, 893025 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS The Meixner polynomials M_n(x) satisfy the recurrence: M_(k+1)=x*M_k-k^2*M_(k-1), M_(-1)=0, M_0=1. See A060524 for an application to combinatorics. - N. J. A. Sloane, May 30 2013 The Meixner polynomials M_n(x) satisfy: M_n(x)=n!*sum(m=0..n/2, binomial(2*m,m)*sum(j=m..n/2, (-1)^(j)*x^(n-2*j)*sum(i=0..2*j-2*m, (2^(i-2*m)*stirling1(i+n+(-2)*j,n-2*j)*binomial(n-2*m-1,2*j-2*m-i))/(i+n+(-2)*j)!))). [Vladimir Kruchinin, Sep 25 2013] REFERENCES I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983. LINKS Table of n, a(n) for n=0..65. Paul L. Butzer and Tom H. Koornwinder, Josef Meixner: His life and his orthogonal polynomials, Indagationes Mathematicae, Volume 30, Issue 1, January 2019, Pages 250-264. A. Hamdi and J. Zeng, Orthogonal polynomials and operator orderings, J. Math. Phys., 51:043506, 2010; arXiv:1006.0808 [math.CO], 2010. R. J. Mathar, Gaussian Quadrature of the Integrals Int_(-infty)^infty F(x) dx /cosh(x) J. Meixner, Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion, J. Lond. Math. Soc. 9 (1934), 6-13. FORMULA E.g.f.: exp(x*arctan(y))/sqrt(1+y^2). EXAMPLE [1], [1, 0], [1, 0, -1], [1, 0, -5, 0], [1, 0, -14, 0, 9], [1, 0, -30, 0, 89, 0], [1, 0, -55, 0, 439, 0, -225], [1, 0, -91, 0, 1519, 0, -3429, 0], [1, 0, -140, 0, 4214, 0, -24940, 0, 11025], [1, 0, -204, 0, 10038, 0, -122156, 0, 230481, 0], ... M_1(x)=x, M_2(x)=x^2-1, M_3(x)=x^3-5*x, M_4(x)=x^4-14*x^2+9, M_5(x)=x^5-30*x^3+89*x, M_6(x)=x^6-55*x^4+439*x^2-225,... MATHEMATICA m[0] = 1; m[1] = x; m[k_] := m[k] = x*m[k - 1] - (k - 1)^2*m[k - 2]; row[n_] := CoefficientList[m[n], x] // Reverse // Abs; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 26 2013 *) PROG (Maxima) M(n, x):=n!*sum(binomial(2*m, m)*sum(((sum((2^(i-2*m)*stirling1(i+n-2*j, n-2*j)*binomial(n-2*m-1, 2*j-2*m-i))/(i+n-2*j)!, i, 0, 2*j-2*m))*(-1)^(j)*x^(n-2*j)), j, m, n/2), m, 0, n/2); [Vladimir Kruchinin, Sep 25 2013] CROSSREFS Cf. A028353, A060524, A000330 (third column), A214615 (row sums), A214616 (fifth column). Triangle without zeros: A094368. Unsigned version: A060524. Sequence in context: A339209 A277529 A354133 * A132795 A277031 A085198 Adjacent sequences: A060335 A060336 A060337 * A060339 A060340 A060341 KEYWORD easy,nonn,tabl AUTHOR Vladeta Jovovic, Mar 30 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 09:03 EDT 2024. Contains 373383 sequences. (Running on oeis4.)