The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060338 Triangle T(n,k) of coefficients of Meixner polynomials of degree n, k=0..n. 7
1, 1, 0, 1, 0, 1, 1, 0, 5, 0, 1, 0, 14, 0, 9, 1, 0, 30, 0, 89, 0, 1, 0, 55, 0, 439, 0, 225, 1, 0, 91, 0, 1519, 0, 3429, 0, 1, 0, 140, 0, 4214, 0, 24940, 0, 11025, 1, 0, 204, 0, 10038, 0, 122156, 0, 230481, 0, 1, 0, 285, 0, 21378, 0, 463490, 0, 2250621, 0, 893025 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,9
COMMENTS
The Meixner polynomials M_n(x) satisfy the recurrence: M_(k+1)=x*M_k-k^2*M_(k-1), M_(-1)=0, M_0=1.
See A060524 for an application to combinatorics. - N. J. A. Sloane, May 30 2013
The Meixner polynomials M_n(x) satisfy: M_n(x)=n!*sum(m=0..n/2, binomial(2*m,m)*sum(j=m..n/2, (-1)^(j)*x^(n-2*j)*sum(i=0..2*j-2*m, (2^(i-2*m)*stirling1(i+n+(-2)*j,n-2*j)*binomial(n-2*m-1,2*j-2*m-i))/(i+n+(-2)*j)!))). [Vladimir Kruchinin, Sep 25 2013]
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
LINKS
Paul L. Butzer and Tom H. Koornwinder, Josef Meixner: His life and his orthogonal polynomials, Indagationes Mathematicae, Volume 30, Issue 1, January 2019, Pages 250-264.
A. Hamdi and J. Zeng, Orthogonal polynomials and operator orderings, J. Math. Phys., 51:043506, 2010; arXiv:1006.0808 [math.CO], 2010.
FORMULA
E.g.f.: exp(x*arctan(y))/sqrt(1+y^2).
EXAMPLE
[1],
[1, 0],
[1, 0, -1],
[1, 0, -5, 0],
[1, 0, -14, 0, 9],
[1, 0, -30, 0, 89, 0],
[1, 0, -55, 0, 439, 0, -225],
[1, 0, -91, 0, 1519, 0, -3429, 0],
[1, 0, -140, 0, 4214, 0, -24940, 0, 11025],
[1, 0, -204, 0, 10038, 0, -122156, 0, 230481, 0], ...
M_1(x)=x, M_2(x)=x^2-1, M_3(x)=x^3-5*x, M_4(x)=x^4-14*x^2+9, M_5(x)=x^5-30*x^3+89*x, M_6(x)=x^6-55*x^4+439*x^2-225,...
MATHEMATICA
m[0] = 1; m[1] = x; m[k_] := m[k] = x*m[k - 1] - (k - 1)^2*m[k - 2]; row[n_] := CoefficientList[m[n], x] // Reverse // Abs; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 26 2013 *)
PROG
(Maxima)
M(n, x):=n!*sum(binomial(2*m, m)*sum(((sum((2^(i-2*m)*stirling1(i+n-2*j, n-2*j)*binomial(n-2*m-1, 2*j-2*m-i))/(i+n-2*j)!, i, 0, 2*j-2*m))*(-1)^(j)*x^(n-2*j)), j, m, n/2), m, 0, n/2); [Vladimir Kruchinin, Sep 25 2013]
CROSSREFS
Cf. A028353, A060524, A000330 (third column), A214615 (row sums), A214616 (fifth column).
Triangle without zeros: A094368. Unsigned version: A060524.
Sequence in context: A339209 A277529 A354133 * A132795 A277031 A085198
KEYWORD
easy,nonn,tabl
AUTHOR
Vladeta Jovovic, Mar 30 2001
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 09:03 EDT 2024. Contains 373383 sequences. (Running on oeis4.)