login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060337
Number of labeled acyclic digraphs with n nodes containing exactly n-2 points of in-degree zero.
2
15, 198, 1610, 10575, 61845, 336924, 1751076, 8801325, 43141175, 207347778, 980828238, 4578689115, 21135851625, 96628899960, 438068838536, 1971349880985, 8813183238315, 39169902510270, 173172640973010
OFFSET
3,1
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 19, (1.6.4).
R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
LINKS
Index entries for linear recurrences with constant coefficients, signature (21,-189,955,-2982,5964,-7640,6048,-2688,512).
FORMULA
G.f.: x^3*(15 - 117*x + 287*x^2 - 138*x^3 - 300*x^4 + 280*x^5)/((1 - x)*(1 - 2*x)*(1 - 4*x))^3. - Andrew Howroyd, Dec 27 2021
MATHEMATICA
LinearRecurrence[{21, -189, 955, -2982, 5964, -7640, 6048, -2688, 512}, {15, 198, 1610, 10575, 61845, 336924, 1751076, 8801325, 43141175}, 20] (* Harvey P. Dale, Mar 23 2022 *)
PROG
(PARI) \\ requires A058876.
my(T=A058876(25)); vector(#T-2, n, T[n+2][n]) \\ Andrew Howroyd, Dec 27 2021
CROSSREFS
Third column of A058876.
Sequence in context: A185899 A345445 A152587 * A180789 A078264 A322914
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Apr 10 2001
STATUS
approved