The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A028353 Coefficient of x^(2*n+1) in arctanh(x)/sqrt(1-x^2), multiplied by (2*n+1)!. 4
 1, 5, 89, 3429, 230481, 23941125, 3555578025, 715154761125, 187188449198625, 61836509511685125, 25163273966324405625, 12368068140988819153125, 7224011282550809645600625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of degree-(2*n+1) permutations with exactly one odd cycle. - Vladeta Jovovic, Aug 13 2004 a(n)=sum over all multinomials M2(2*n+1,k), k from {1..p(2*n+1)} restricted to partitions with exactly one odd and possibly even parts. p(2*n+1)= A000041(2*n+1) (partition numbers) and for the M2-multinomial numbers in A-St order see A036039(2*n+1,k). - Wolfdieter Lang, Aug 07 2007. LINKS G. C. Greubel, Table of n, a(n) for n = 0..220 FORMULA D-finite with recurrence: a(n) = (8*n^2 - 4*n + 1)*a(n-1) - 4*(n-1)^2*(2*n-1)^2*a(n-2). - Vaclav Kotesovec, Oct 24 2013 a(n) ~ (2*n)^(2*n+1)*log(n)/exp(2*n) * (1 + (gamma + 4*log(2)) / log(n)), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 24 2013 EXAMPLE arctanh(x)/sqrt(1-x^2) = x + 5/6*x^3 + 89/120*x^5 + 381/560*x^7 + ... Multinomial representation for a(2): partitions of 2*2+1=5 with one odd part: (5) with position k=1, (1,4) with k=2, (2,3) with k=3, (1,2^2) with k=5; M2(5,1)= 24, M2(5,2)= 30, M2(5,3)= 20, M2(5,5)= 15, adding up to a(2)=89. MATHEMATICA Table[n!*SeriesCoefficient[ArcTanh[x]/Sqrt[1-x^2], {x, 0, n}], {n, 1, 41, 2}] (* Vaclav Kotesovec, Oct 24 2013 *) CROSSREFS Cf. A060338. Cf. A060524. Sequence in context: A358388 A339001 A330605 * A191512 A015085 A258181 Adjacent sequences: A028350 A028351 A028352 * A028354 A028355 A028356 KEYWORD nonn,easy AUTHOR Joe Keane (jgk(AT)jgk.org) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 20 15:17 EDT 2024. Contains 374459 sequences. (Running on oeis4.)