login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028356
Simple periodic sequence underlying clock sequence A028354.
14
1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4
OFFSET
0,2
COMMENTS
From Klaus Brockhaus, May 15 2010: (Start)
Continued fraction expansion of (28+sqrt(2730))/56.
Decimal expansion of 1112/9009.
Partial sums of 1 followed by A130151.
First differences of A028357. (End)
REFERENCES
Zdeněk Horský, "Pražský orloj" ("The Astronomical Clock of Prague", in Czech), Panorama, Prague, 1988, pp. 76-78.
LINKS
Michal Křížek, Alena Šolcová and Lawrence Somer, Construction of Šindel sequences, Comment. Math. Univ. Carolin., 48 (2007), 373-388.
N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
FORMULA
Sum of any six successive terms is 15.
G.f.: (1 + 2*x + 3*x^2 + 4*x^3 + 3*x^4 + 2*x^5)/(1 - x^6).
From Wesley Ivan Hurt, Jun 23 2016: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4) for n>3.
a(n) = (15 - cos(n*Pi) - 8*cos(n*Pi/3))/6. (End)
E.g.f.: (15*exp(x) - exp(-x) - 8*cos(sqrt(3)*x/2)*(sinh(x/2) + cosh(x/2)))/6. - Ilya Gutkovskiy, Jun 23 2016
a(n) = abs(((n+3) mod 6)-3) + 1. - Daniel Jiménez, Jan 14 2023
MAPLE
A028356:=n->[1, 2, 3, 4, 3, 2][(n mod 6)+1]: seq(A028356(n), n=0..100); # Wesley Ivan Hurt, Jun 23 2016
MATHEMATICA
CoefficientList[ Series[(1 + 2x + 3x^2 + 4x^3 + 3x^4 + 2x^5)/(1 - x^6), {x, 0, 85}], x]
LinearRecurrence[{1, 0, -1, 1}, {1, 2, 3, 4}, 120] (* or *) PadRight[{}, 120, {1, 2, 3, 4, 3, 2}] (* Harvey P. Dale, Apr 15 2016 *)
PROG
(Magma) &cat [[1, 2, 3, 4, 3, 2]^^20]; // Klaus Brockhaus, May 15 2010
(Sage)
def A():
a, b, c, d = 1, 2, 3, 4
while True:
yield a
a, b, c, d = b, c, d, a + (d - b)
A028356 = A(); [next(A028356) for n in range(106)] # Peter Luschny, Jul 26 2014
(Python)
def A028356(n): return (1, 2, 3, 4, 3, 2)[n%6] # Chai Wah Wu, Apr 18 2024
CROSSREFS
Cf. A177924 (decimal expansion of (28+sqrt(2730))/56), A130151 (repeat 1, 1, 1, -1, -1, -1), A028357 (partial sums of A028356). - Klaus Brockhaus, May 15 2010
Sequence in context: A008287 A017859 A171456 * A232244 A260644 A073791
KEYWORD
nonn,easy
EXTENSIONS
Additional comments from Robert G. Wilson v, Mar 01 2002
STATUS
approved