OFFSET
0,2
COMMENTS
From Klaus Brockhaus, May 15 2010: (Start)
Continued fraction expansion of (28+sqrt(2730))/56.
Decimal expansion of 1112/9009.
Partial sums of 1 followed by A130151.
First differences of A028357. (End)
REFERENCES
Zdeněk Horský, "Pražský orloj" ("The Astronomical Clock of Prague", in Czech), Panorama, Prague, 1988, pp. 76-78.
LINKS
Michal Křížek, Alena Šolcová and Lawrence Somer, Construction of Šindel sequences, Comment. Math. Univ. Carolin., 48 (2007), 373-388.
N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1).
FORMULA
Sum of any six successive terms is 15.
G.f.: (1 + 2*x + 3*x^2 + 4*x^3 + 3*x^4 + 2*x^5)/(1 - x^6).
From Wesley Ivan Hurt, Jun 23 2016: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4) for n>3.
a(n) = (15 - cos(n*Pi) - 8*cos(n*Pi/3))/6. (End)
E.g.f.: (15*exp(x) - exp(-x) - 8*cos(sqrt(3)*x/2)*(sinh(x/2) + cosh(x/2)))/6. - Ilya Gutkovskiy, Jun 23 2016
a(n) = abs(((n+3) mod 6)-3) + 1. - Daniel Jiménez, Jan 14 2023
MAPLE
A028356:=n->[1, 2, 3, 4, 3, 2][(n mod 6)+1]: seq(A028356(n), n=0..100); # Wesley Ivan Hurt, Jun 23 2016
MATHEMATICA
CoefficientList[ Series[(1 + 2x + 3x^2 + 4x^3 + 3x^4 + 2x^5)/(1 - x^6), {x, 0, 85}], x]
LinearRecurrence[{1, 0, -1, 1}, {1, 2, 3, 4}, 120] (* or *) PadRight[{}, 120, {1, 2, 3, 4, 3, 2}] (* Harvey P. Dale, Apr 15 2016 *)
PROG
(Magma) &cat [[1, 2, 3, 4, 3, 2]^^20]; // Klaus Brockhaus, May 15 2010
(Sage)
def A():
a, b, c, d = 1, 2, 3, 4
while True:
yield a
a, b, c, d = b, c, d, a + (d - b)
(Python)
def A028356(n): return (1, 2, 3, 4, 3, 2)[n%6] # Chai Wah Wu, Apr 18 2024
CROSSREFS
Cf. A177924 (decimal expansion of (28+sqrt(2730))/56), A130151 (repeat 1, 1, 1, -1, -1, -1), A028357 (partial sums of A028356). - Klaus Brockhaus, May 15 2010
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Additional comments from Robert G. Wilson v, Mar 01 2002
STATUS
approved