Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #58 Apr 19 2024 02:03:20
%S 1,2,3,4,3,2,1,2,3,4,3,2,1,2,3,4,3,2,1,2,3,4,3,2,1,2,3,4,3,2,1,2,3,4,
%T 3,2,1,2,3,4,3,2,1,2,3,4,3,2,1,2,3,4,3,2,1,2,3,4,3,2,1,2,3,4,3,2,1,2,
%U 3,4,3,2,1,2,3,4,3,2,1,2,3,4,3,2,1,2,3,4,3,2,1,2,3,4,3,2,1,2,3,4,3,2,1,2,3,4
%N Simple periodic sequence underlying clock sequence A028354.
%C From _Klaus Brockhaus_, May 15 2010: (Start)
%C Continued fraction expansion of (28+sqrt(2730))/56.
%C Decimal expansion of 1112/9009.
%C Partial sums of 1 followed by A130151.
%C First differences of A028357. (End)
%D Zdeněk Horský, "Pražský orloj" ("The Astronomical Clock of Prague", in Czech), Panorama, Prague, 1988, pp. 76-78.
%H Michal Křížek, Alena Šolcová and Lawrence Somer, <a href="https://dml.cz/handle/10338.dmlcz/119666">Construction of Šindel sequences</a>, Comment. Math. Univ. Carolin., 48 (2007), 373-388.
%H N. J. A. Sloane, <a href="http://neilsloane.com/doc/sg.txt">My favorite integer sequences</a>, in Sequences and their Applications (Proceedings of SETA '98).
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,-1,1).
%F Sum of any six successive terms is 15.
%F G.f.: (1 + 2*x + 3*x^2 + 4*x^3 + 3*x^4 + 2*x^5)/(1 - x^6).
%F From _Wesley Ivan Hurt_, Jun 23 2016: (Start)
%F a(n) = a(n-1) - a(n-3) + a(n-4) for n>3.
%F a(n) = (15 - cos(n*Pi) - 8*cos(n*Pi/3))/6. (End)
%F E.g.f.: (15*exp(x) - exp(-x) - 8*cos(sqrt(3)*x/2)*(sinh(x/2) + cosh(x/2)))/6. - _Ilya Gutkovskiy_, Jun 23 2016
%F a(n) = abs(((n+3) mod 6)-3) + 1. - _Daniel Jiménez_, Jan 14 2023
%p A028356:=n->[1, 2, 3, 4, 3, 2][(n mod 6)+1]: seq(A028356(n), n=0..100); # _Wesley Ivan Hurt_, Jun 23 2016
%t CoefficientList[ Series[(1 + 2x + 3x^2 + 4x^3 + 3x^4 + 2x^5)/(1 - x^6), {x, 0, 85}], x]
%t LinearRecurrence[{1,0,-1,1},{1,2,3,4},120] (* or *) PadRight[{},120,{1,2,3,4,3,2}] (* _Harvey P. Dale_, Apr 15 2016 *)
%o (Magma) &cat [[1, 2, 3, 4, 3, 2]^^20]; // _Klaus Brockhaus_, May 15 2010
%o (Sage)
%o def A():
%o a, b, c, d = 1, 2, 3, 4
%o while True:
%o yield a
%o a, b, c, d = b, c, d, a + (d - b)
%o A028356 = A(); [next(A028356) for n in range(106)] # _Peter Luschny_, Jul 26 2014
%o (Python)
%o def A028356(n): return (1,2,3,4,3,2)[n%6] # _Chai Wah Wu_, Apr 18 2024
%Y Cf. A000034, A028354, A068073, A118382, A118383.
%Y Cf. A177924 (decimal expansion of (28+sqrt(2730))/56), A130151 (repeat 1, 1, 1, -1, -1, -1), A028357 (partial sums of A028356). - _Klaus Brockhaus_, May 15 2010
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_
%E Additional comments from _Robert G. Wilson v_, Mar 01 2002