login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073791
Replace 4^k with (-4)^k in base 4 expansion of n.
9
0, 1, 2, 3, -4, -3, -2, -1, -8, -7, -6, -5, -12, -11, -10, -9, 16, 17, 18, 19, 12, 13, 14, 15, 8, 9, 10, 11, 4, 5, 6, 7, 32, 33, 34, 35, 28, 29, 30, 31, 24, 25, 26, 27, 20, 21, 22, 23, 48, 49, 50, 51, 44, 45, 46, 47, 40, 41, 42, 43, 36, 37, 38, 39, -64, -63, -62, -61, -68, -67, -66, -65, -72, -71, -70, -69
OFFSET
0,3
COMMENTS
Base 4 representation for n converted from base -4 to base 10.
LINKS
Dana G. Korssjoen, Biyao Li, Stefan Steinerberger, Raghavendra Tripathi, and Ruimin Zhang, Finding structure in sequences of real numbers via graph theory: a problem list, arXiv:2012.04625 [math.CO], 2020-2021.
FORMULA
a(4*k+m) = -4*a(k)+m for 0 <= m < 4. - Chai Wah Wu, Jan 16 2020
MATHEMATICA
f[n_Integer, b_Integer] := Block[{l = IntegerDigits[n]}, Sum[l[[ -i]]*(-b)^(i - 1), {i, 1, Length[l]}]]; a = Table[ FromDigits[ IntegerDigits[n, 4]], {n, 0, 80}]; b = {}; Do[b = Append[b, f[a[[n]], 4]], {n, 1, 80}]; b
PROG
(PARI) a(n) = subst(Pol(digits(n, 4)), x, -4); \\ Michel Marcus, Jan 30 2019
KEYWORD
base,easy,sign
AUTHOR
Robert G. Wilson v, Aug 12 2002
STATUS
approved