login
A320283
Lexicographical ordering of pure imaginary integers in the base (-1+i) numeral system.
2
0, 1, -2, -1, -4, -3, -6, -5, 8, 9, 6, 7, 4, 5, 2, 3, 16, 17, 14, 15, 12, 13, 10, 11, 24, 25, 22, 23, 20, 21, 18, 19, -32, -31, -34, -33, -36, -35, -38, -37, -24, -23, -26, -25, -28, -27, -30, -29, -16, -15, -18, -17, -20, -19, -22, -21, -8, -7, -10, -9, -12, -11, -14, -13, -64, -63, -66, -65, -68, -67, -70, -69
OFFSET
0,3
COMMENTS
For ordering of pure real integers in same system see A073791.
All integers appear in this sequence.
LINKS
Andrey Zabolotskiy, Table of n, a(n) for n = 0..8191 (terms up to 255 from Andreas K. Badea)
Solomon I. Khmelnik, Specialized Digital Computer for Operations with Complex Numbers, Questions of Radio Electronics, 12 (1964), 60-82 [in Russian].
W. J. Penney, A "binary" system for complex numbers, NSA Technical Journal, Vol. X, No. 2 (1965), 13-15.
W. J. Penney, A "binary" system for complex numbers, JACM 12 (1965), 247-248.
FORMULA
From Andrey Zabolotskiy, Jan 31 2019: (Start)
a(n) = A073791(2*n)/2.
a(n) = -a(4*n)/4.
a(n) = -4*a(floor(n/4)) + a(n mod 4). (End)
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Andreas K. Badea, Oct 09 2018
STATUS
approved