The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A320285 Semiprimes followed by successive gaps 4, 6, 9. 1
8203, 9703, 18163, 35823, 72687, 72847, 75759, 95695, 97959, 132879, 177159, 194127, 198763, 201099, 210379, 223807, 226887, 228043, 299227, 306283, 344779, 347527, 351399, 360763, 403467, 407107, 454143, 487927, 506467, 514927, 516487, 532803, 537367, 538903, 546847, 556707, 562819 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
4, 6, 9 are the first 3 semiprimes (A001358).
Are there semiprimes followed by gaps {4, 6, 9, 10} = the first 4 semiprimes?
Answer: No, one of them would be divisible by 4. - Giovanni Resta, Oct 23 2018
Semiprimes s such that the first semiprime after s equals s+4, the next one equals s+10, and the next one equals s+19. - Harvey P. Dale, Sep 25 2022
LINKS
MATHEMATICA
spQ[n_] := Plus @@ Last /@ FactorInteger[n] == 2; Select[ Range[10^6/2] 2 + 1, AllTrue[# + {0, 4, 10, 19}, spQ] && Count[ Range[ #+1, #+18], x_ /; spQ@ x] == 2 &] (* Giovanni Resta, Oct 23 2018 *)
SequencePosition[If[PrimeOmega[#]==2, 1, 0]&/@Range[600000], {1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1}][[All, 1]] (* Harvey P. Dale, Sep 25 2022 *)
PROG
(PARI) next_semiprime(n) = for(x=n, oo, if(bigomega(x)==2, return(x)))
is(n) = if(bigomega(n)!=2, return(0)); my(v=[n, next_semiprime(n+1), next_semiprime(next_semiprime(n+1)+1), next_semiprime(next_semiprime(next_semiprime(n+1)+1)+1)]); v[2]-v[1]==4 && v[3]-v[2]==6 && v[4]-v[3]==9 \\ Felix Fröhlich, Oct 23 2018
CROSSREFS
Cf. A001358.
Sequence in context: A168346 A331357 A045060 * A168471 A031844 A210008
KEYWORD
nonn
AUTHOR
Zak Seidov, Oct 09 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 01:12 EDT 2024. Contains 372900 sequences. (Running on oeis4.)