The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A320282 a(n) = (3^(prime(n)-1) - 2^(prime(n)-1))/prime(n). 1
 13, 95, 5275, 40565, 2528305, 20376755, 1364211535, 788845655845, 6641614785575, 4056609907500605, 296528399013300025, 2544627551941066235, 188573149984760785495, 121907205372133465501165, 79832689778949397606269355, 694937020886283311634222725, 461241110187445155009340352195 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 COMMENTS Fermat quotients in base 3/2. For n > 3, a(n) is divisible by 5. Primes p such that p^2 divides 3^(p-1) - 2^(p-1) (base-3/2 Wieferich primes) are p = 23, ... What's the next? LINKS G. C. Greubel, Table of n, a(n) for n = 3..317 EXAMPLE For n = 3, prime(3) = 5 and a(3) = (3^4 - 2^4)/5 = 13. For n = 4, prime(4) = 7 and a(4) = (3^6 - 2^6)/7 = 95. MATHEMATICA p[n_]:=Prime[n]; a[n_]:=(3^(p[n]-1) - 2^(p[n]-1))/p[n]; Array[a, 50, 3] (* Stefano Spezia, Oct 11 2018 *) PROG (PARI) a(n) = my(p=prime(n)); (3^(p-1) - 2^(p-1))/p (Magma) [(3^(p-1) - 2^(p-1)) div p: p in PrimesInInterval(4, 100)]; // Vincenzo Librandi, Oct 12 2018 CROSSREFS Cf. A073631 (base-3/2 Fermat pseudoprimes). Sequence in context: A044645 A153703 A222503 * A366484 A297081 A297603 Adjacent sequences: A320279 A320280 A320281 * A320283 A320284 A320285 KEYWORD nonn AUTHOR Jianing Song, Oct 09 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 11:14 EDT 2024. Contains 373407 sequences. (Running on oeis4.)