The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A320282 a(n) = (3^(prime(n)-1) - 2^(prime(n)-1))/prime(n). 1
13, 95, 5275, 40565, 2528305, 20376755, 1364211535, 788845655845, 6641614785575, 4056609907500605, 296528399013300025, 2544627551941066235, 188573149984760785495, 121907205372133465501165, 79832689778949397606269355, 694937020886283311634222725, 461241110187445155009340352195 (list; graph; refs; listen; history; text; internal format)
OFFSET
3,1
COMMENTS
Fermat quotients in base 3/2.
For n > 3, a(n) is divisible by 5.
Primes p such that p^2 divides 3^(p-1) - 2^(p-1) (base-3/2 Wieferich primes) are p = 23, ... What's the next?
LINKS
EXAMPLE
For n = 3, prime(3) = 5 and a(3) = (3^4 - 2^4)/5 = 13.
For n = 4, prime(4) = 7 and a(4) = (3^6 - 2^6)/7 = 95.
MATHEMATICA
p[n_]:=Prime[n]; a[n_]:=(3^(p[n]-1) - 2^(p[n]-1))/p[n]; Array[a, 50, 3] (* Stefano Spezia, Oct 11 2018 *)
PROG
(PARI) a(n) = my(p=prime(n)); (3^(p-1) - 2^(p-1))/p
(Magma) [(3^(p-1) - 2^(p-1)) div p: p in PrimesInInterval(4, 100)]; // Vincenzo Librandi, Oct 12 2018
CROSSREFS
Cf. A073631 (base-3/2 Fermat pseudoprimes).
Sequence in context: A044645 A153703 A222503 * A366484 A297081 A297603
KEYWORD
nonn
AUTHOR
Jianing Song, Oct 09 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 11:14 EDT 2024. Contains 373407 sequences. (Running on oeis4.)