login
A366484
Place n equally spaced points on each side of an equilateral triangle, and join each of these points by a chord to the 2*n new points on the other two sides: sequence gives number of interior vertices in the resulting planar graph.
5
0, 0, 13, 96, 285, 901, 1605, 3534, 5797, 9813, 14319, 23809, 30912, 47154, 62728, 82440, 104493, 144730, 173637, 229948, 276325, 336861, 403383, 509146, 582342, 702150, 824875, 969303, 1098225, 1321888, 1463487, 1724094, 1952410, 2221395, 2505064, 2846800, 3103677, 3556029, 3978646, 4443883
OFFSET
0,3
COMMENTS
See A366483 for further information.
LINKS
Scott R. Shannon, Image for n = 2.
Scott R. Shannon, Image for n = 3.
Scott R. Shannon, Image for n = 4.
Scott R. Shannon, Image for n = 5.
Scott R. Shannon, Image for n = 10.
FORMULA
a(n) = A366485(n) - A366486(n) - 3*n - 2 (Euler).
CROSSREFS
Cf. A366483 (vertices), A366485 (edges), A366486 (regions).
If the 3*n points are placed "in general position" instead of uniformly, we get sequences A366478, A365929, A366932, A367015.
If the 3*n points are placed uniformly and we also draw chords from the three corner points of the triangle to these 3*n points, we get A274585, A092866, A274586, A092867.
Sequence in context: A153703 A222503 A320282 * A297081 A297603 A094499
KEYWORD
nonn
AUTHOR
STATUS
approved