login
A366481
Number of conjugacy classes of elements of order n in the Monster group.
2
1, 2, 3, 4, 2, 6, 2, 6, 2, 5, 1, 10, 2, 3, 4, 3, 1, 5, 1, 6, 4, 2, 2, 10, 1, 2, 2, 4, 1, 7, 2, 2, 2, 1, 2, 4, 0, 1, 4, 4, 1, 4, 0, 2, 1, 4, 2, 1, 0, 1, 1, 2, 0, 1, 1, 3, 1, 0, 2, 6, 0, 2, 0, 0, 0, 2, 0, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3
OFFSET
1,2
COMMENTS
There are 194 conjugacy classes of elements in the Monster group. The largest terms in this sequence are a(12) = a(24) = 10. a(n) = 0 for all n > 119. n is a term of A367141 if and only if a(n) > 0.
REFERENCES
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
LINKS
Atlas of Finite Groups, Monster group M.
CROSSREFS
Cf. A367141.
Sequence in context: A120636 A209747 A117744 * A361697 A091732 A299439
KEYWORD
nonn,fini,full
AUTHOR
Hal M. Switkay, Nov 13 2023
STATUS
approved