%I #43 Jun 14 2024 22:31:11
%S 1,2,3,4,2,6,2,6,2,5,1,10,2,3,4,3,1,5,1,6,4,2,2,10,1,2,2,4,1,7,2,2,2,
%T 1,2,4,0,1,4,4,1,4,0,2,1,4,2,1,0,1,1,2,0,1,1,3,1,0,2,6,0,2,0,0,0,2,0,
%U 1,2,2,2,0,0,0,0,0,0,3,0,0,0,0,0,3
%N Number of conjugacy classes of elements of order n in the Monster group.
%C There are 194 conjugacy classes of elements in the Monster group. The largest terms in this sequence are a(12) = a(24) = 10. a(n) = 0 for all n > 119. n is a term of A367141 if and only if a(n) > 0.
%D J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
%H Hal M. Switkay, <a href="/A366481/b366481.txt">Table of n, a(n) for n = 1..120</a>
%H Atlas of Finite Groups, <a href="https://brauer.maths.qmul.ac.uk/Atlas/v3/spor/M/">Monster group M</a>.
%Y Cf. A367141.
%K nonn,fini,full
%O 1,2
%A _Hal M. Switkay_, Nov 13 2023