

A117744


Triangle read by rows: coefficient of x^n in the power series of x/(1  m*x  x^2 + x^3  x^5) in row n, column m=1..n+2.


0



0, 0, 0, 1, 1, 1, 1, 2, 3, 4, 2, 5, 10, 17, 26, 2, 11, 32, 71, 134, 227, 3, 25, 103, 297, 691, 1393, 2535, 4, 57, 332, 1243, 3564, 8549, 18052, 34647, 6, 130, 1070, 5202, 18382, 52466, 128550, 280930, 561782, 9, 297, 3449, 21771, 94809, 321989, 915417
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,8


COMMENTS

The value in row n=1 is set to 0 by definition.


LINKS



EXAMPLE

0
0, 0
1, 1, 1
1, 2, 3, 4
2, 5, 10, 17, 26
2, 11, 32, 71, 134, 227
3, 25, 103, 297, 691, 1393, 2535
4, 57, 332, 1243, 3564, 8549, 18052, 34647
6, 130, 1070, 5202, 18382, 52466, 128550, 280930, 561782
9, 297, 3449, 21771, 94809, 321989, 915417, 2277879, 5111081, 10559169


MATHEMATICA

(* define the polynomial*) p[x_] = p[x_] = x/(1  m*x  x^2 + x^3  x^5); (* Taylor derivative expansion of the polynomial*) a = Table[ Flatten[{{p[0]}, Table[Coefficient[Series[p[x], {x, 0, 30}], x^n], {n, 1, 10}]}], {m, 1, 10}] (*antidiagonal expansion to give triangular function*) b = Join[{{0}}, Delete[Table[Table[a[[n]][[m]], {n, 1, m + 1}], {m, 0, 9}], 1]] Flatten[b]


CROSSREFS



KEYWORD



AUTHOR



EXTENSIONS

Offset set to 1 by Assoc. Eds. of the OEIS, Jun 15 2010


STATUS

approved



