login
A366486
Place n equally spaced points on each side of an equilateral triangle, and join each of these points by a chord to the 2*n new points on the other two sides: sequence gives number of regions in the resulting planar graph.
5
1, 4, 27, 130, 385, 1044, 2005, 4060, 6831, 11272, 16819, 26436, 35737, 52147, 69984, 92080, 117952, 157770, 193465, 249219, 302670, 368506, 443026, 546462, 635125, 757978, 890133, 1041775, 1191442, 1407324, 1581058, 1837417, 2085096, 2365657, 2670429, 3018822, 3328351, 3771595, 4213602
OFFSET
0,2
COMMENTS
See A366483 for further information.
LINKS
Scott R. Shannon, Image for n = 1.
Scott R. Shannon, Image for n = 2.
Scott R. Shannon, Image for n = 3.
Scott R. Shannon, Image for n = 4.
Scott R. Shannon, Image for n = 5.
Scott R. Shannon, Image for n = 10.
FORMULA
a(n) = A366485(n) - A366483(n) + 1 (Euler).
CROSSREFS
Cf. A366483 (vertices), A366484 (interior vertices), A366485 (edges).
If the 3*n points are placed "in general position" instead of uniformly, we get sequences A366478, A365929, A366932, A367015.
If the 3*n points are placed uniformly and we also draw chords from the three corner points of the triangle to these 3*n points, we get A274585, A092866, A274586, A092867.
Sequence in context: A268598 A267886 A034512 * A240194 A278358 A274751
KEYWORD
nonn
AUTHOR
STATUS
approved