login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015085
Carlitz-Riordan q-Catalan numbers (recurrence version) for q=4.
32
1, 1, 5, 89, 5885, 1518897, 1558435125, 6386478643785, 104648850228298925, 6858476391221411106209, 1797922152786660462507074405, 1885261615172756172119161342909753
OFFSET
0,3
LINKS
Robin Sulzgruber, The Symmetry of the q,t-Catalan Numbers, Thesis, University of Vienna, 2013.
FORMULA
a(n+1) = Sum_{i=0..n} q^i*a(i)*a(n-i) with q=4 and a(0)=1.
G.f. satisfies: A(x) = 1 / (1 - x*A(4*x)) = 1/(1-x/(1-4*x/(1-4^2*x/(1-4^3*x/(1-...))))) (continued fraction). - Seiichi Manyama, Dec 26 2016
a(n) ~ c * 2^(n*(n-1)), where c = Product{j>=1} 1/(1-1/4^j) = 1/QPochhammer(1/4) = 1.4523536424495970158347130224852748733612279788... - Vaclav Kotesovec, Nov 03 2021
EXAMPLE
G.f. = 1 + x + 5*x^2 + 89*x^3 + 5885*x^4 + 1518897*x^5 + 1558435125*x^6 + ...
From Seiichi Manyama, Dec 05 2016: (Start)
a(1) = 1,
a(2) = 4^1 + 1 = 5,
a(3) = 4^3 + 4^2 + 2*4^1 + 1 = 89,
a(4) = 4^6 + 4^5 + 2*4^4 + 3*4^3 + 3*4^2 + 3*4^1 + 1 = 5885. (End)
MATHEMATICA
a[n_] := a[n] = Sum[4^i*a[i]*a[n -i -1], {i, 0, n -1}]; a[0] = 1; Array[a, 16, 0] (* Robert G. Wilson v, Dec 24 2016 *)
m = 12; ContinuedFractionK[If[i == 1, 1, -4^(i - 2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
PROG
(Ruby)
def A(q, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
ary
end
def A015085(n)
A(4, n)
end # Seiichi Manyama, Dec 24 2016
CROSSREFS
Cf. A227543.
Cf. A015108 (q=-11), A015107 (q=-10), A015106 (q=-9), A015105 (q=-8), A015103 (q=-7), A015102 (q=-6), A015100 (q=-5), A015099 (q=-4), A015098 (q=-3), A015097 (q=-2), A090192 (q=-1), A000108 (q=1), A015083 (q=2), A015084 (q=3), this sequence (q=4), A015086 (q=5), A015089 (q=6), A015091 (q=7), A015092 (q=8), A015093 (q=9), A015095 (q=10), A015096 (q=11).
Column k=4 of A090182, A290759.
Sequence in context: A330605 A028353 A191512 * A258181 A355082 A067258
KEYWORD
nonn
EXTENSIONS
Offset changed to 0 by Seiichi Manyama, Dec 05 2016
STATUS
approved