login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015084
Carlitz-Riordan q-Catalan numbers for q=3.
32
1, 1, 4, 43, 1252, 104098, 25511272, 18649337311, 40823535032644, 267924955577741566, 5274102955963545775864, 311441054994969341088610030, 55171471477692117486494217498280
OFFSET
0,3
COMMENTS
Limit_{n->inf} a(n)/3^((n-1)(n-2)/2) = Product{k>=1} 1/(1-1/3^k) = 1.785312341998534190367486296013703535718796... - Paul D. Hanna, Jan 24 2005
It appears that the Hankel transform is 3^A002412(n). - Paul Barry, Aug 01 2008
Hankel transform of the aerated sequence is 3^C(n+1,3). - Paul Barry, Oct 31 2008
LINKS
Robin Sulzgruber, The Symmetry of the q,t-Catalan Numbers, Thesis, University of Vienna, 2013.
FORMULA
a(n+1) = Sum_{i=0..n} q^i*a(i)*a(n-i) with q=3 and a(0)=1.
G.f. satisfies: A(x) = 1/(1-x*A(3*x)) = 1/(1-x/(1-3*x/(1-3^2*x/(1-3^3*x/(1-...))))) (continued fraction). - Paul D. Hanna, Jan 24 2005
a(n) = the upper left term in M^n, M an infinite production matrix as follows:
1, 3, 0, 0, 0, 0, ...
1, 3, 9, 0, 0, 0, ...
1, 3, 9, 27, 0, 0, ...
1, 3, 9, 27, 81, 0, ...
... - Gary W. Adamson, Jul 14 2011
G.f.: T(0), where T(k) = 1 - x*3^k/(x*3^k - 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 18 2013
EXAMPLE
G.f. = 1 + x + 4*x^2 + 43*x^3 + 1252*x^4 + 104098*x^5 + 25511272*x^6 + ...
From Seiichi Manyama, Dec 05 2016: (Start)
a(1) = 1,
a(2) = 3^1 + 1 = 4,
a(3) = 3^3 + 3^2 + 2*3^1 + 1 = 43,
a(4) = 3^6 + 3^5 + 2*3^4 + 3*3^3 + 3*3^2 + 3*3^1 + 1 = 1252. (End)
MAPLE
A015084 := proc(n)
option remember;
if n = 1 then
1;
else
add(3^(i-1)*procname(i)*procname(n-i), i=1..n-1) ;
end if;
end proc: # R. J. Mathar, Sep 29 2012
MATHEMATICA
a[n_] := a[n] = Sum[3^i*a[i]*a[n -i -1], {i, 0, n -1}]; a[0] = 1; Array[a, 16, 0] (* Robert G. Wilson v, Dec 24 2016 *)
m = 13; ContinuedFractionK[If[i == 1, 1, -3^(i-2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
PROG
(PARI) a(n)=if(n==1, 1, sum(i=1, n-1, 3^(i-1)*a(i)*a(n-i))) \\ Paul D. Hanna
(Ruby)
def A(q, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
ary
end
def A015084(n)
A(3, n)
end # Seiichi Manyama, Dec 24 2016
CROSSREFS
Cf. A227543.
Cf. A015108 (q=-11), A015107 (q=-10), A015106 (q=-9), A015105 (q=-8), A015103 (q=-7), A015102 (q=-6), A015100 (q=-5), A015099 (q=-4), A015098 (q=-3), A015097 (q=-2), A090192 (q=-1), A000108 (q=1), A015083 (q=2), this sequence (q=3), A015085 (q=4), A015086 (q=5), A015089 (q=6), A015091 (q=7), A015092 (q=8), A015093 (q=9), A015095 (q=10), A015096 (q=11).
Column k=3 of A090182, A290759.
Sequence in context: A317140 A152282 A153255 * A355081 A176827 A220675
KEYWORD
nonn
EXTENSIONS
More terms from Paul D. Hanna, Jan 24 2005
Offset changed to 0 by Seiichi Manyama, Dec 05 2016
STATUS
approved