login
A028350
Expansion of -1/x + 6*3F2( 5/6, 1, 7/6; 3/2, 2; 108*x).
1
-1, 6, 210, 12012, 831402, 63740820, 5209363380, 444799488600, 39209074920090, 3541117629057540, 325969196485349340, 30471769822097981160, 2884881686418189303300, 276043232874562618320072
OFFSET
-1,2
LINKS
FORMULA
D-finite with recurrence (n+1)*(2*n+1)*a(n) -6*(6*n-1)*(6*n+1)*a(n-1)=0. - R. J. Mathar, Jul 27 2022
G.f.: -sqrt(3)/(2*x)*((2*sqrt(-x)+sqrt(1-108*x)/3^(3/2))^(1/3)+1/(3*(2*sqrt(-x)+sqrt(1-108*x)/3^(3/2))^(1/3))). - Vladimir Kruchinin, Oct 03 2022
MAPLE
a := proc(n) option remember; if n = -1 then -1 else 6*(6*n - 1)*(6*n + 1)*a(n - 1)/((n + 1)*(2*n + 1)) fi; end;
MATHEMATICA
nxt[{n_, a_}]:={n+1, (6*a*(5+6*n)*(7+6*n))/((2+n)*(3+2*n))}; Join[ {-1}, Transpose[NestList[nxt, {0, 6}, 15]][[2]]] (* Harvey P. Dale, May 10 2013 *)
Table[SeriesCoefficient[-(Sqrt[3]*(1/(3*(Sqrt[1 - 108*x]/(3*Sqrt[3]) + 2*Sqrt[-x])^(1/3)) + (Sqrt[1 - 108*x]/(3*Sqrt[3]) + 2*Sqrt[-x])^(1/3)))/(2*x), {x, 0, n}], {n, -1, 15}] (* Vaclav Kotesovec, Oct 03 2022, after Vladimir Kruchinin *)
CROSSREFS
Sequence in context: A183252 A183287 A087639 * A359761 A238685 A346017
KEYWORD
sign
STATUS
approved