login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132795
Triangle of Gely numbers, read by rows.
1
1, 1, 0, 1, 0, 1, 1, 0, 5, 0, 1, 0, 16, 6, 1, 1, 0, 42, 56, 21, 0, 1, 0, 99, 316, 267, 36, 1, 1, 0, 219, 1408, 2367, 960, 85, 0, 1, 0, 466, 5482, 16578, 14212, 3418, 162, 1, 1, 0, 968, 19624, 99330, 153824, 77440, 11352, 341, 0, 1, 0, 1981, 66496, 534898, 1364848, 1233970, 389104, 36829, 672, 1
OFFSET
0,9
COMMENTS
First row is for n=0. First column is for k=0.
Sum of rows is n! = permutations of n symbols (A000142)
These numbers are related to the Eulerian numbers A(n,k).
Third Column (k=2) is A002662(n+1).
Second Diagonal (k=n-1) is A132796.
Binomial transform of this triangle gives set partitions without singletons (in a form very close to array A105794).
REFERENCES
Charles O. Gely, Un tableau de conversion des polynomes cyclotomiques cousin des nombres Euleriens, Preprint Univ. Paris 7, 1999.
Olivier Gérard, Quelques facons originales de compter les permutations, submitted to Knuth07.
Olivier Gérard and Karol Penson, Set partitions, Multiset permutations and bi-permutations, in preparation.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 1990, p. 269.
FORMULA
T(n,k) = sum(j=0..k, (-1)^j*C(n+1,j)*sum(m=0..n, (k-j)^m) ).
EXAMPLE
Triangle starts:
1;
1, 0;
1, 0, 1;
1, 0, 5, 0;
1, 0, 16, 6, 1;
1, 0, 42, 56, 21, 0;
...
PROG
(PARI) T(n, k)= sum(j=0, k, (-1)^j*binomial(n+1, j)*sum(m=0, n, (k-j)^m)); \\ Michel Marcus, Jun 04 2014
CROSSREFS
Sequence in context: A277529 A354133 A060338 * A277031 A085198 A339207
KEYWORD
nonn,easy,tabl
AUTHOR
Olivier Gérard, Aug 31 2007
STATUS
approved