login
A198102
Decimal expansion of least x having x^2+3x=cos(x).
3
2, 6, 6, 6, 5, 0, 9, 8, 2, 1, 5, 2, 5, 4, 2, 1, 4, 7, 1, 1, 9, 2, 9, 0, 9, 8, 8, 1, 2, 4, 3, 5, 6, 5, 4, 8, 2, 0, 4, 0, 5, 8, 9, 6, 3, 2, 5, 6, 0, 6, 1, 3, 7, 4, 7, 1, 3, 8, 6, 7, 6, 2, 0, 9, 2, 6, 7, 6, 5, 2, 5, 1, 2, 9, 3, 0, 3, 2, 0, 1, 7, 1, 2, 6, 8, 5, 9, 7, 1, 2, 8, 2, 7, 4, 4, 3, 5, 9, 7
OFFSET
1,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -2.666509821525421471192909881243565...
greatest x: 0.2910714507806038010117661064073...
MATHEMATICA
a = 1; b = 3; c = 1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -3, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -3, -2}, WorkingPrecision -> 110]
RealDigits[r1] (* A198102 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .29, .3}, WorkingPrecision -> 110]
RealDigits[r2] (* A198103 *)
CROSSREFS
Cf. A197737.
Sequence in context: A123945 A291793 A284121 * A097466 A259311 A141624
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 21 2011
STATUS
approved