login
A198099
Decimal expansion of greatest x having x^2-3x=-2*cos(x).
3
3, 5, 2, 5, 8, 6, 7, 9, 0, 1, 2, 2, 7, 9, 5, 8, 6, 1, 7, 9, 5, 4, 8, 2, 5, 0, 8, 1, 7, 1, 1, 3, 9, 4, 3, 0, 9, 9, 4, 6, 9, 8, 7, 4, 7, 8, 3, 2, 2, 2, 5, 2, 7, 4, 0, 4, 3, 6, 2, 7, 9, 1, 3, 1, 4, 5, 5, 0, 0, 6, 7, 9, 4, 6, 7, 9, 5, 3, 0, 3, 7, 6, 7, 8, 4, 7, 2, 6, 4, 1, 2, 1, 6, 5, 5, 4, 9, 1, 3
OFFSET
1,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: 0.672255167738256880748604617870325976...
greatest x: 3.525867901227958617954825081711394...
MATHEMATICA
a = 1; b = -3; c = -2;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, 0, 4}]
r1 = x /. FindRoot[f[x] == g[x], {x, .65, .68}, WorkingPrecision -> 110]
RealDigits[r1] (* A198098 *)
r2 = x /. FindRoot[f[x] == g[x], {x, 3.5, 3.6}, WorkingPrecision -> 110]
RealDigits[r2] (* A198099 *)
CROSSREFS
Cf. A197737.
Sequence in context: A090396 A086387 A073264 * A016657 A372143 A302793
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 21 2011
STATUS
approved