login
A198098
Decimal expansion of least x having x^2-3x=-2*cos(x).
3
6, 7, 2, 2, 5, 5, 1, 6, 7, 7, 3, 8, 2, 5, 6, 8, 8, 0, 7, 4, 8, 6, 0, 4, 6, 1, 7, 8, 7, 0, 3, 2, 5, 9, 7, 6, 6, 5, 7, 5, 0, 9, 3, 6, 8, 2, 1, 3, 9, 8, 1, 8, 9, 5, 5, 0, 1, 7, 7, 5, 2, 3, 5, 7, 8, 1, 1, 2, 9, 5, 4, 4, 7, 2, 1, 2, 4, 8, 1, 8, 8, 7, 8, 6, 0, 8, 5, 0, 8, 3, 4, 5, 5, 2, 9, 9, 8, 0, 4
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: 0.672255167738256880748604617870325976...
greatest x: 3.525867901227958617954825081711394...
MATHEMATICA
a = 1; b = -3; c = -2;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, 0, 4}]
r1 = x /. FindRoot[f[x] == g[x], {x, .65, .68}, WorkingPrecision -> 110]
RealDigits[r1] (* A198098 *)
r2 = x /. FindRoot[f[x] == g[x], {x, 3.5, 3.6}, WorkingPrecision -> 110]
RealDigits[r2] (* A198099 *)
CROSSREFS
Cf. A197737.
Sequence in context: A156918 A123154 A021602 * A021941 A171654 A197916
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 21 2011
STATUS
approved