login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198109 Decimal expansion of greatest x having x^2+3x=4*cos(x). 3

%I

%S 7,6,5,7,2,6,4,4,2,9,2,0,5,4,0,7,1,7,4,8,3,1,0,1,0,4,9,2,3,9,4,4,9,9,

%T 3,8,2,5,9,3,8,8,0,0,4,2,0,4,9,6,3,7,0,7,0,8,5,2,1,5,1,7,2,8,8,4,5,8,

%U 6,9,4,9,7,5,8,1,7,4,9,7,9,4,2,2,8,3,9,2,5,1,1,7,8,8,9,2,8,8,8

%N Decimal expansion of greatest x having x^2+3x=4*cos(x).

%C See A197737 for a guide to related sequences. The Mathematica program includes a graph.

%e least x: -2.072191302711809327379682290027003...

%e greatest x: 0.7657264429205407174831010492394...

%t a = 1; b = 3; c = 4;

%t f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]

%t Plot[{f[x], g[x]}, {x, -3, 1}]

%t r1 = x /. FindRoot[f[x] == g[x], {x, -2.1, -2.9}, WorkingPrecision -> 110]

%t RealDigits[r1] (* A198108 *)

%t r2 = x /. FindRoot[f[x] == g[x], {x, .76, .77}, WorkingPrecision -> 110]

%t RealDigits[r2] (* A198109 *)

%Y Cf. A197737.

%K nonn,cons

%O 0,1

%A _Clark Kimberling_, Oct 21 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 6 18:52 EDT 2020. Contains 336256 sequences. (Running on oeis4.)