|
|
A299251
|
|
a(n) = ((Sum_{k=1..floor((n+1)^2/4)} d(k)) - T(n)) / 2, where d(n) = number of divisors of n (A000005) and T(n) = the n-th triangular number (A000217).
|
|
1
|
|
|
0, 0, 1, 2, 4, 7, 11, 15, 21, 28, 37, 45, 55, 67, 80, 95, 110, 127, 146, 164, 187, 209, 235, 260, 286, 315, 346, 380, 413, 449, 485, 522, 564, 605, 651, 695, 743, 792, 844, 898, 950, 1006, 1064, 1123, 1185, 1250, 1318, 1384, 1451, 1523, 1596, 1670, 1747, 1828
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
Twice this sequence is an attempt to find a counterpart to A161664: both compare triangular numbers T(n) and partial sums of numbers of divisors S(n). A161664 computes the excess of T(n) compared to S(n), whereas 2*a(n) computes the excess of S(n') compared to T(n), where n' is chosen equal to floor((n+1)^2/4). This choice appears structurally natural and economical when illustrated in a diagram. (See provided link.)
|
|
LINKS
|
|
|
FORMULA
|
|
|
MATHEMATICA
|
F[n_] := Floor[(1/4)*n^2]
A[n_] := (Sum[DivisorSigma[0, k], {k, 1, F[n + 1]}] - n*(n + 1)/2)/2
Table[A[n], {n, 1, 100}]
|
|
PROG
|
(PARI)
f(n)=floor(n^2/4)
a(n)=(sum(k=1, f(n+1), numdiv(k))-n*(n+1)/2)/2
for(n=1, 100, print1(a(n), ", "))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|