login
A249186
Decimal expansion of the Goldberg Zero-One constant A(2,1).
4
0, 0, 3, 7, 0, 1, 5, 9, 9, 1, 8, 3, 2, 8, 0, 6, 9, 1, 4, 1, 9, 3, 1, 7, 0, 4, 0, 8, 6, 5, 3, 2, 1, 7, 1, 7, 1, 7, 8, 0, 0, 1, 5, 2, 0, 4, 6, 5, 1, 3, 7, 2, 0, 1, 6, 8, 2, 1, 2, 6, 6, 8, 8, 3, 7, 8, 0, 3, 6, 1, 3, 9, 1, 1, 4, 2, 0, 8, 8, 5, 0, 5, 1, 8, 1, 2, 5, 7, 0, 3, 4, 7, 5, 3, 2, 9, 6, 5, 0, 1, 8, 9
OFFSET
0,3
COMMENTS
Named after the Soviet and Israeli mathematician Anatolii Asirovich Goldberg (1930 -2008). - Amiram Eldar, Apr 15 2021
REFERENCES
A. A. Goldberg, A certain theorem of Landau type (in Russian), Teor. Funkciĭ Funkcional. Anal. i Priložen., Vol. 17 (1973), pp. 200-206, 246.
LINKS
Walter Bergweiler and Alexandre Eremenko, Goldberg's constants.
Steven Finch, Goldberg’s Zero-One Constants, May 21, 2014. [Cached copy, with permission of the author]
FORMULA
A(2,1) = exp(-Pi^2/log(3 + 2*sqrt(2))).
EXAMPLE
0.003701599183280691419317040865321717178...
MATHEMATICA
A[2, 1] = Exp[-Pi^2/Log[3 + 2*Sqrt[2]]]; Join[{0, 0}, RealDigits[A[2, 1], 10, 100] // First]
CROSSREFS
Sequence in context: A293525 A016617 A299632 * A118746 A181913 A127584
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved