login
Decimal expansion of the Goldberg Zero-One constant A(2,1).
4

%I #15 Apr 15 2021 05:11:22

%S 0,0,3,7,0,1,5,9,9,1,8,3,2,8,0,6,9,1,4,1,9,3,1,7,0,4,0,8,6,5,3,2,1,7,

%T 1,7,1,7,8,0,0,1,5,2,0,4,6,5,1,3,7,2,0,1,6,8,2,1,2,6,6,8,8,3,7,8,0,3,

%U 6,1,3,9,1,1,4,2,0,8,8,5,0,5,1,8,1,2,5,7,0,3,4,7,5,3,2,9,6,5,0,1,8,9

%N Decimal expansion of the Goldberg Zero-One constant A(2,1).

%C Named after the Soviet and Israeli mathematician Anatolii Asirovich Goldberg (1930 -2008). - _Amiram Eldar_, Apr 15 2021

%D A. A. Goldberg, A certain theorem of Landau type (in Russian), Teor. Funkciĭ Funkcional. Anal. i Priložen., Vol. 17 (1973), pp. 200-206, 246.

%H Walter Bergweiler and Alexandre Eremenko, <a href="http://www.math.purdue.edu/~eremenko/dvi/goldbergconst.pdf">Goldberg's constants</a>.

%H Steven Finch, <a href="/A249186/a249186.pdf">Goldberg’s Zero-One Constants</a>, May 21, 2014. [Cached copy, with permission of the author]

%F A(2,1) = exp(-Pi^2/log(3 + 2*sqrt(2))).

%e 0.003701599183280691419317040865321717178...

%t A[2,1] = Exp[-Pi^2/Log[3 + 2*Sqrt[2]]]; Join[{0, 0}, RealDigits[A[2, 1], 10, 100] // First]

%Y Cf. A249187, A249188.

%K nonn,cons,easy

%O 0,3

%A _Jean-François Alcover_, Oct 23 2014