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Let  be the set of all functions  that are analytic on some ring { : ()  ||  1}
and omit the values of both 0 and 1 there. Each function is defined in its own distinct

ring. By omit, it is meant that () ∈ {0 1} for all . We assume () to be as

small as possible. Let  ⊆  consist of all functions that are analytic on the open

unit disk . Thus, for  ∈ , we have

() =

½
0 if  is never 0 or 1

sup {|| : () ∈ {0 1}} otherwise.


Given a real number , the -points of  are the points  for which () = . Of

course, 0-points are more commonly referred to as zeroes.

Consider the circle  defined byn
 : || =

p
()

o
with counterclockwise orientation, and let  be the image of  under  . The index

(or winding number) of  with respect to the point  is

(  ) =
1

2

Z




 − 


Our interest is in the scenario when (  0), (  1) are nonzero and distinct; with-

out loss of generality, we assume that (  0)  (  1). Let  (0 1) ⊆  consist

of all functions  with (  0) = 0 and (  1) = 1. Let (01) ⊆  consist

of all functions  with exactly one 0-point [of multiplicity0] and exactly one 1-point

[of multiplicity 1]. Again, we focus on 0 6= 0, 1 6= 0 and 0 6= 1; without

loss of generality, assume that 0  1.

Go
,
ldberg [1] studied constants similar to

(0 1) = inf {() :  ∈  (0 1)} 

(01) = inf {() :  ∈ (01)} 
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Bergweiler & Eremenko [2] discovered closed-form expressions:

(2 1) =  = exp

Ã
− 2

ln
¡
3 + 2

√
2
¢! = 00037015991

(3 1) = (3 2) = exp

Ã
− 2

ln
¡
5 + 2

√
6
¢! = 00134968456

(4 1) = (4 3) = exp

Ã
− 2

ln
¡
7 + 4

√
3
¢! = 00235855221

and moreover proved that

 = inf {() :  ∈  and 0  1 ≥ 1} = 

(Go
,
ldberg’s original bounds for  were strengthened by Jenkins [3].) The numerical

computation of

(2 1) =  = 00252896

(3 1) = 0084924 (3 2) = 0227417

(4 1) = 0140571 (4 3) = 0290697

is more difficult — no precise formulas are known — and it is merely conjectured that

 = inf {() :  ∈  and 0  1 ≥ 1} = 

(The best lower bound 000587 for  in [2], improving on [4, 5, 6], is still far off.) An

elaborate construction of a certain transcendental analytic function on  possessing

exactly one 0-point at − [with 0 = 2] and exactly one 1-point at  [with 1 = 1]

occupies much of the discussion in [2]. It shows that  ≤ . A proof that  ≥ 

remains open.

0.1. Belgian Chocolate Problem. Here the difficulties of construction are over-

whelming. What is the smallest   0 for which there exists an analytic function on

 possessing exactly one 0-point at 0 [of multiplicity 1] and exactly two 1-points at

± [each of multiplicity 1]? The current best bounds are [2, 7]

001450779    010913022

Blondel’s question [8, 9] is often phrased as follows. Let () = 2 − 2 + 1 and
() = 2−1. What is the largest   0 for which there exist stable real polynomials
 and  with deg() ≥ deg() such that  +  is stable? (A polynomial is called



Go ,Ldberg’s Zero-One Constants 3

stable if all its zeroes are in the left half plane.) The numbers  and  are related

by

 =

r
1− 

1 + 
  =

1−  2

1 +  2

and the current best bounds are

097646152    099957913

Incremental progress in specifying such constraints is found in [4, 10, 11, 12, 13, 14].

0.2. Landau’s Theorem with Explicit Bound. If an analytic function  on

 omits the values of both 0 and 1, then [15, 16, 17]

|(0)| ≤ 2 |0(0)| (|ln |(0)||+)

where the constant

 =
1

42
Γ

µ
1

4

¶4
= 43768792304

is best possible. Other occurrences of  are similar to results appearing in [18].

If analytic  satisfies (0) = 0 and 0(0) = 1, then () covers a segment of each

line passing through the origin; further, each segment has length at least 2 =

04569465810 and this is sharp [19, 20, 21]. If analytic  satisfies (−) = −()
for all  ∈  and 0(0) = 1, then () covers a disk with center at the origin and

radius 1 = 02284732905; again, this is sharp [8, 22]. The presence of the elliptic

modular function

() = 16 exp()

∞Y
=1

µ
1 + exp(2)

1 + exp((2− 1))
¶8

 Im()  0

1

 0()
=
4




is keenly felt here.

References

[1] A. A. Go
,
ldberg, A certain theorem of Landau type (in Russian), Teor. Funkcĭı
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