login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199603 Decimal expansion of least x satisfying x+3*cos(x)=0. 3
1, 1, 7, 0, 1, 2, 0, 9, 5, 0, 0, 0, 2, 6, 2, 6, 0, 5, 3, 7, 0, 6, 0, 4, 3, 0, 1, 1, 8, 5, 8, 9, 7, 1, 0, 8, 1, 9, 9, 9, 4, 0, 2, 0, 2, 5, 9, 5, 5, 5, 1, 5, 6, 4, 7, 4, 1, 6, 8, 1, 9, 7, 4, 4, 3, 7, 0, 0, 2, 4, 9, 2, 4, 7, 7, 1, 7, 3, 0, 8, 4, 2, 6, 4, 7, 9, 9, 0, 8, 0, 1, 1, 0, 0, 7, 0, 8, 0, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

See A199597 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

least: -1.1701209500026260537060430118589710...

greatest:  2.9381003939708118076581364784259...

MATHEMATICA

a = 1; b = 3; c = 0;

f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -1.5, 3.5}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110]

RealDigits[r]  (* A199603 least of 4 roots *)

r = x /. FindRoot[f[x] == g[x], {x, 2.93, 2.94}, WorkingPrecision -> 110]

RealDigits[r]  (* A199604 greatest of 4 roots *)

CROSSREFS

Cf. A199597.

Sequence in context: A136115 A061846 A293530 * A121570 A169681 A202354

Adjacent sequences:  A199600 A199601 A199602 * A199604 A199605 A199606

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 08 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 04:15 EDT 2019. Contains 327212 sequences. (Running on oeis4.)