Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #20 Oct 13 2017 05:23:05
%S 1,1,0,1,-1,0,1,-1,1,0,1,-1,-1,-7,0,1,-1,-1,5,25,0,1,-1,-1,-1,-23,
%T -181,0,1,-1,-1,-1,25,-41,1201,0,1,-1,-1,-1,1,-101,1111,-10291,0,1,-1,
%U -1,-1,1,139,-209,-6259,97777,0,1,-1,-1,-1,1,19,-569,251,-16015
%N Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of e.g.f. 1/Product_{j > 0, j mod k > 0} exp(x^j).
%H Seiichi Manyama, <a href="/A293530/b293530.txt">Antidiagonals n = 0..139, flattened</a>
%F E.g.f. of column k: exp((Sum_{j=1..k-1} x^j)/(x^k - 1)).
%e Square array begins:
%e 1, 1, 1, 1, 1, ...
%e 0, -1, -1, -1, -1, ...
%e 0, 1, -1, -1, -1, ...
%e 0, -7, 5, -1, -1, ...
%e 0, 25, -23, 25, 1, ...
%e 0, -181, -41, -101, 139, ...
%Y Columns k=1..3 give A000007, A293532, A293533.
%Y Rows n=0 gives A000012.
%Y Main diagonal gives A293116.
%Y Cf. A293525.
%K sign,tabl
%O 0,14
%A _Seiichi Manyama_, Oct 11 2017