Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Sep 30 2019 21:54:29
%S 557,901,1207,1549,4607,1451,2449,5176,2774,13543,4049,10124,8201,
%T 42269,24675,5293,19601,13543,91110,45124,39016,5849,20924,24482,
%U 91678,95236,302947,217682,6193,22049,30949,101399,188872,387587,928423,165407,7057,26018
%N A(n, k) is the k-th number b > 1 such that b^(prime(n+i)-1) == 1 (mod prime(n+i)^2) for each i = 0..3, with k running over the positive integers; square array, read by antidiagonals, downwards.
%e The array starts as follows:
%e 557, 901, 1549, 2449, 4049, 5293, 5849, 6193
%e 1207, 4607, 5176, 10124, 19601, 20924, 22049, 26018
%e 1451, 2774, 8201, 13543, 24482, 30949, 31457, 40199
%e 13543, 42269, 91110, 91678, 101399, 132576, 142148, 210258
%e 24675, 45124, 95236, 188872, 236915, 273971, 296449, 298117
%e 39016, 302947, 387587, 609436, 637111, 962525, 1015033, 1074751
%e 217682, 928423, 1546225, 1666084, 1756986, 2105290, 2673538, 2733520
%e 165407, 215029, 1008933, 1370816, 1487743, 1493395, 1624207, 2998943
%t rows = 8; t = 3;
%t T = Table[lst = {}; b = 2;
%t While[Length[lst] < rows,
%t p = Prime[n + Range[0, t]];
%t If[AllTrue[PowerMod[b,(p-1) p^2], #==1 &], AppendTo[lst, b]]; b++];
%t lst, {n, rows}];
%t T // TableForm (* Print the A(n,k) table *)
%t Flatten[Table[T[[j, i - j + 1]], {i, 1, rows}, {j, 1, i}]] (* _Robert Price_, Sep 30 2019 *)
%o (PARI) printrow(n, terms) = my(c=0); for(b=2, oo, my(j=0); for(i=0, 3, my(p=prime(n+i)); if(Mod(b, p^2)^(p-1)==1, j++)); if(j==4, print1(b, ", "); c++); if(c==terms, break))
%o array(rows, cols) = for(x=1, rows, printrow(x, cols); print(""))
%o array(8, 10) \\ print initial 8 rows and 10 columns of array
%Y Cf. A244249, A256236.
%Y Cf. analog for i = 0..t: A319059 (t=1), A319060 (t=2), A319062 (t=4), A319063 (t=5), A319064 (t=6), A319065 (t=7).
%K nonn,tabl
%O 1,1
%A _Felix Fröhlich_, Sep 09 2018