The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A358835 Number of multiset partitions of integer partitions of n with constant block sizes and constant block sums. 3
 1, 1, 3, 4, 8, 8, 17, 16, 31, 34, 54, 57, 108, 102, 166, 191, 294, 298, 504, 491, 803, 843, 1251, 1256, 2167, 1974, 3133, 3226, 4972, 4566, 8018, 6843, 11657, 11044, 17217, 15010, 28422, 21638, 38397, 35067, 58508, 44584, 91870, 63262, 125114, 106264, 177483 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Andrew Howroyd, Table of n, a(n) for n = 0..1000 FORMULA a(n) = Sum_{d|n} Sum_{j=1..n/d} binomial(d + A008284(n/d, j) - 1, d) for n > 0. - Andrew Howroyd, Dec 31 2022 EXAMPLE The a(1) = 1 through a(6) = 17 multiset partitions: {1} {2} {3} {4} {5} {6} {11} {12} {13} {14} {15} {1}{1} {111} {22} {23} {24} {1}{1}{1} {112} {113} {33} {1111} {122} {114} {2}{2} {1112} {123} {11}{11} {11111} {222} {1}{1}{1}{1} {1}{1}{1}{1}{1} {1113} {1122} {3}{3} {11112} {111111} {12}{12} {2}{2}{2} {111}{111} {11}{11}{11} {1}{1}{1}{1}{1}{1} MATHEMATICA Table[If[n==0, 1, Length[Union[Sort/@Join@@Table[Select[Tuples[IntegerPartitions[d], n/d], SameQ@@Length/@#&], {d, Divisors[n]}]]]], {n, 0, 20}] PROG (PARI) P(n, y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n)) seq(n) = {my(u=Vec(P(n, y)-1)); concat([1], vector(n, n, sumdiv(n, d, my(p=u[n/d]); sum(j=1, n/d, binomial(d + polcoef(p, j, y) - 1, d)))))} \\ Andrew Howroyd, Dec 31 2022 CROSSREFS For just constant sums we have A305551, ranked by A326534. For just constant lengths we have A319066, ranked by A320324. The version for set partitions is A327899. For distinct instead of constant lengths and sums we have A358832. The version for twice-partitions is A358833. A001970 counts multiset partitions of integer partitions. A063834 counts twice-partitions, strict A296122. Cf. A000219, A007425, A141199, A327908, A356932, A358831. Sequence in context: A310016 A030014 A047968 * A358833 A322117 A181778 Adjacent sequences: A358832 A358833 A358834 * A358836 A358837 A358838 KEYWORD nonn AUTHOR Gus Wiseman, Dec 05 2022 EXTENSIONS Terms a(41) and beyond from Andrew Howroyd, Dec 31 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 24 05:49 EDT 2024. Contains 371918 sequences. (Running on oeis4.)