OFFSET
0,3
COMMENTS
A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers.
LINKS
nLab, Young Diagram.
The Unapologetic Mathematician weblog, Generalized Young Tableaux.
EXAMPLE
The a(4) = 14 generalized Young tableaux:
4 1 3 2 2 1 1 2 1 1 1 1
.
1 2 1 1 1 2 1 1 1 1 1
3 2 2 1 1 1 1
.
1 1 1
1 1
2 1
.
1
1
1
1
The a(5) = 26 generalized Young tableaux:
5 1 4 2 3 1 1 3 1 2 2 1 1 1 2 1 1 1 1 1
.
1 2 1 1 1 3 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1
4 3 3 1 2 1 2 2 1 1 1 1
.
1 1 1 1 1 2 1 1 1 1 1
1 2 1 1 1 1 1
3 2 2 1 1 1
.
1 1 1
1 1
1 1
2 1
.
1
1
1
1
1
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
ptnplane[n_]:=Union[Map[primeMS, Join@@Permutations/@facs[n], {2}]];
Table[Sum[Length[Select[ptnplane[Times@@Prime/@y], And@@(LessEqual@@@Transpose[PadRight[#]/.(0->Infinity)])&]], {y, IntegerPartitions[n]}], {n, 10}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jan 16 2019
EXTENSIONS
a(16)-a(26) from Seiichi Manyama, Aug 19 2020
STATUS
approved