login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323450
Number of ways to fill a Young diagram with positive integers summing to n such that all rows and columns are weakly increasing.
5
1, 1, 3, 6, 14, 26, 56, 103, 203, 374, 702, 1262, 2306, 4078, 7242, 12628, 21988, 37756, 64682, 109606, 185082, 309958, 516932, 856221, 1412461, 2316416, 3783552
OFFSET
0,3
COMMENTS
A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers.
LINKS
The Unapologetic Mathematician weblog, Generalized Young Tableaux.
EXAMPLE
The a(4) = 14 generalized Young tableaux:
4 1 3 2 2 1 1 2 1 1 1 1
.
1 2 1 1 1 2 1 1 1 1 1
3 2 2 1 1 1 1
.
1 1 1
1 1
2 1
.
1
1
1
1
The a(5) = 26 generalized Young tableaux:
5 1 4 2 3 1 1 3 1 2 2 1 1 1 2 1 1 1 1 1
.
1 2 1 1 1 3 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1
4 3 3 1 2 1 2 2 1 1 1 1
.
1 1 1 1 1 2 1 1 1 1 1
1 2 1 1 1 1 1
3 2 2 1 1 1
.
1 1 1
1 1
1 1
2 1
.
1
1
1
1
1
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
ptnplane[n_]:=Union[Map[primeMS, Join@@Permutations/@facs[n], {2}]];
Table[Sum[Length[Select[ptnplane[Times@@Prime/@y], And@@(LessEqual@@@Transpose[PadRight[#]/.(0->Infinity)])&]], {y, IntegerPartitions[n]}], {n, 10}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jan 16 2019
EXTENSIONS
a(16)-a(26) from Seiichi Manyama, Aug 19 2020
STATUS
approved