login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299968
Number of normal generalized Young tableaux of size n with all rows and columns strictly increasing.
18
1, 1, 2, 5, 15, 51, 189, 753, 3248, 14738, 70658, 354178, 1857703, 10121033, 57224955, 334321008, 2017234773, 12530668585, 80083779383, 525284893144, 3533663143981, 24336720018666, 171484380988738, 1234596183001927, 9075879776056533, 68052896425955296
OFFSET
0,3
COMMENTS
A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..50 (first 46 terms from Ludovic Schwob)
D. E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific Journal of Mathematics, Vol. 34, No. 3 (1970), 709-727.
Wikipedia, Young tableau
FORMULA
a(n) = Sum_{k=0..n} 2^k * A238121(n,k). - Ludovic Schwob, Sep 23 2023
EXAMPLE
The a(4) = 15 tableaux:
1 2 3 4
.
1 2 3 1 2 4 1 3 4 1 2 3 1 2 3
4 3 2 2 3
.
1 2 1 3 1 2
3 4 2 4 2 3
.
1 2 1 3 1 2 1 4 1 3
3 2 2 2 2
4 4 3 3 3
.
1
2
3
4
MATHEMATICA
unddis[y_]:=DeleteCases[y-#, 0]&/@Tuples[Table[If[y[[i]]>Append[y, 0][[i+1]], {0, 1}, {0}], {i, Length[y]}]];
dos[y_]:=With[{sam=Rest[unddis[y]]}, If[Length[sam]===0, If[Total[y]===0, {{}}, {}], Join@@Table[Prepend[#, y]&/@dos[sam[[k]]], {k, 1, Length[sam]}]]];
Table[Sum[Length[dos[y]], {y, IntegerPartitions[n]}], {n, 1, 8}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 26 2018
EXTENSIONS
More terms from Ludovic Schwob, Sep 23 2023
STATUS
approved